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Abstract

I develop a new methodology that delivers the first causal estimates of the

independent effects of parenthood and its timing, leveraging variation from in-

trauterine insemination (IUI) success. The method exploits quasi-experiments

where individuals not initially assigned to treatment may undergo repeated as-

signments, as when IUI failure induces subsequent procedures. By leveraging

entire assignment sequences, it separates treatment effects (parenthood ver-

sus childlessness) from timing effects (earlier versus later childbearing). Using

Dutch administrative data, I find that motherhood persistently reduces earnings

(10–28%) and work hours (10–22%), causing up to half of post-childbirth gender

inequality. Delayed childbearing—even when unintended—mitigates women’s

losses.
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1 Introduction

The differential impact of parenthood on women’s and men’s careers is widely

viewed as a key driver of gender inequality in the labor market (Goldin, 2014;

Bertrand, 2020; Cortés & Pan, 2023). Assessing this impact is challenging be-

cause of selection: individuals who become parents at a specific point in their

career may differ systematically from those who remain childless. Many studies ad-

dress selection by exploiting quasi-experimental fertility variation, such as in vitro

fertilization success (Lundborg et al., 2017) or contraceptive failure (Gallen et al.,

2024). However, most women who do not conceive in the initial quasi-experiment,

such as following a first IVF cycle or shortly after initiating contraceptive use,

eventually become mothers.

Existing work compares women who conceive initially to a mixed group of

women who either remain childless or become mothers later. The resulting esti-

mates therefore capture a weighted average of two effects: the effect of parenthood

(relative to childlessness) and the effect of its timing (earlier versus later child-

bearing). These forces may operate in opposite directions. They may also call for

distinct policies aimed at family–career compatibility or the timing of childbear-

ing decisions. Disentangling these effects is therefore essential for understanding

gender inequality and guiding interventions to address it.

This paper provides the first causal evidence on the independent effects of

parenthood and its timing. To do so, I develop a new methodology to separate

these effects and apply it to a common but previously unstudied source of fertility

variation: the success of intrauterine insemination (IUI). The approach exploits

quasi-experiments in which individuals not initially assigned to treatment may

undergo repeated assignments, such as when women whose first IUI fails attempt

additional procedures. By leveraging variation across entire assignment sequences,

it disentangles treatment and timing effects. Using Dutch administrative data, I

show that IUI success is uncorrelated with prior labor market outcomes, condi-

tional on age, providing plausibly random fertility variation. Using this variation,

I estimate (i) the effect of having children relative to remaining childless, and

(ii) the effect of conceiving later than intended due to failed previous attempts.

I find that parenthood substantially and persistently reduces women’s earnings

and work hours, and that later childbearing—even when unintended—results in

smaller losses. My findings imply that both the incidence and timing of parent-

hood play a central role in shaping gender inequality. They indicate that women

face a double trade-off: not only between parenthood and career, but also between

delaying childbearing and permanent career setbacks.
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The core idea behind the method developed in this paper is to leverage re-

peated random treatment assignment (e.g., a series of IUI procedures) to help

identify both average treatment and timing effects. Ideally, such variation could

be used to recover average outcomes in scenarios such as receiving treatment at the

first assignment, receiving it later, or never receiving it. This would allow treat-

ment and timing effects to be assessed separately without imposing restrictions on

how they vary. The challenge is that, even with random assignment realizations,

individuals may pursue different numbers of assignments, and some may obtain

treatment regardless of assignment (e.g., conceive naturally). Both behaviors may

correlate with outcomes independent of treatment, making it difficult to use such

sequential variation without introducing selection.

To make progress, I introduce a treatment-effects framework that classifies

individuals into latent types along two dimensions: how many assignments they

would pursue absent prior assignment and whether they would eventually obtain

treatment without assignment. I first use this framework to isolate the effect of

treatment received at the first assignment relative to remaining untreated. I show

that the outcomes of individuals who remained untreated after a given number

of assignments recover the average untreated outcome for the corresponding type.

I also show that continuation rates after each unsuccessful assignment, together

with uptake rates conditional on prior failures, reveal the distribution of latent

types. These components identify the average untreated outcomes for individuals

whose treatment depends on assignment within the sequence. I then argue that

the most effective way forward without restrictive assumptions is to bound the

average treated outcome for this group. I show that this is possible using the

observed outcomes of those treated initially together with the group’s population

share, yielding bounds on their average treatment effect.

Isolating treatment effects without restrictions on timing effects provides the

foundation for analyzing them directly. I first leverage sequential assignment to

identify a generalized analogue of the standard instrumental variable (IV) esti-

mand, which instruments eventual treatment with initial assignment. When out-

comes do not depend on timing, this estimand coincides with the average treatment

effect captured by the bounds, that is, treatment at the first assignment for indi-

viduals whose uptake depends on the entire assignment sequence. Otherwise, it

is biased in proportion to timing effects, just like conventional IV. Combining the

baseline bounds with this estimand then yields bounds on timing effects, showing

how outcomes differ between treatment at the initial assignment and treatment

obtained after the assignment sequence.
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The method relies on minimal assumptions, requiring only that assignment be

as good as random, conditional on present observables. Crucially, the method al-

lows unrestricted treatment-effect heterogeneity across individuals and over time,

as well as unrestricted selection into sequential assignments and treatment without

assignment. The bounds are sharp in the sense that they cannot be narrowed with-

out additional assumptions. Narrower bounds require assumptions about which

initially treated individuals would obtain treatment absent assignment. For in-

stance, one might assume that couples conceiving a first child through IUI but a

second naturally would still have had at least one child if IUI had failed, reflecting

the higher priority placed on having a first child. Such assumptions also yield

testable implications, making them empirically assessable.

Finally, I discuss estimation. Inference for the bounds is challenging because

they involve selecting observations at the tails of the outcome distribution, requir-

ing nonparametric estimation of a quantile function. To address this, I propose or-

thogonal moment functions that eliminate the first-order sensitivity of the bounds

to estimation error in the quantile function, justifying asymptotic inference as if

the true distribution were known.

My analysis focuses on opposite-sex couples who undergo IUI for their first

child. The procedure is typically used as a first-line treatment for couples ex-

periencing difficulties conceiving naturally, particularly when fertility issues are

male-factor-related or unexplained. By placing sperm directly into the uterus

using a flexible catheter, it closely mimics natural conception while remaining

minimally invasive, quick, and generally painless.

About 5% of Dutch women who became mothers in 2017 had undergone IUI.

However, many more would likely have turned to the procedure had they not con-

ceived naturally earlier. Because IUI is typically initiated only after at least a

year of unsuccessful natural attempts, fecundity rates from the medical literature

can be used to obtain a lower bound on the size of this group. These calculations

suggest that IUI users can be viewed as an as-good-as-random sample represent-

ing at least half of all mothers (see Section 4.3). Hence, my estimates may be

informative for the broader population of parents.

I present two main sets of empirical results. First, I apply my method to esti-

mate how parenthood affects women’s and men’s labor market outcomes and con-

tributes to gender inequality. When parenthood begins at the first IUI, women’s

annual work hours persistently decline by 10%–22% and their earnings by 10%–28%.

For men, the bounds are of comparable width but centered near zero, ruling out

small negative effects. Taken together, parenthood causes 32%–54% of the gender
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gap in work hours and 4%–47% of the earnings gap among parents.

Second, I examine timing effects. I find that women who become mothers after

IUI failure continue to work more and earn more than if they had children ear-

lier. This is despite the fact that these women have become mothers more recently,

when impacts are often thought to be the largest (see Lundborg et al., 2017, for dis-

cussion). It is likewise despite the fact that these delays are unintended—arising

from IUI failure and resulting in conception later than planned—which is also

thought to result in larger losses if women time fertility to minimize career costs

(see Bensnes et al., 2025, for discussion). These results suggest that early child-

bearing systematically impedes career progression, whereas later childbearing mit-

igates these losses.

I present several supplementary analyses. First, I quantify selection into fer-

tility timing and find it to be substantial, explaining a share of gender inequality

comparable in magnitude to the causal effect of parenthood itself. Second, I assess

potential mechanisms, focusing on relationship breakdowns and mental health fol-

lowing unsuccessful conception attempts. While these factors raise concerns about

whether the estimated effects of parenthood generalize to voluntary childlessness,

I find that they are unlikely to contribute meaningfully to the overall estimates.

I conclude by discussing the broader implications of my findings for the role

of parenthood in the labor market. In particular, I argue that the gains from

delayed childbearing estimated in this paper likely represent a lower bound on the

returns to planned delays, since unplanned delays may depress outcomes through

unsuccessful conception attempts and shift births to less favorable career moments.

My work builds on research that uses various quasi-experiments to estimate

how parenthood shapes labor market outcomes (Hotz et al., 2005; Agüero &Marks,

2008; Cristia, 2008; Miller, 2011). These studies compare women who give birth

at a particular moment for plausibly random reasons with women who do not

give birth then (e.g., due to miscarriage), many of whom later become mothers.

Typically, they either focus on reduced-form estimates, which capture a weighted

average of parenthood and timing effects, or, to isolate parenthood effects, they

assume away timing effects and use the initial birth as an instrument for eventual

parenthood. Yet such estimates can be difficult to interpret, since delayed parent-

hood, for example at the peak of one’s career, may not be comparable to either

childlessness or earlier childbearing. My contribution is to provide the first causal

evidence that disentangles the effects of parenthood from those of its timing.

There is little evidence on the effects of parenthood timing. B́ıró et al. (2019)

use Australian data to compare women who give birth with those who experience
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a miscarriage but later give birth, and find limited returns to delaying childbirth.

They address selection into childbirth after miscarriage by balancing observables,

while noting that unobserved factors may still influence the results. Other studies

examine how parenthood effects vary across women with different birth timing.

Lundborg et al. (2017) show that younger Danish women experience earnings

losses after successful IVF similar to older women, while Gallen et al. (2024) find

that Swedish women facing contraceptive failure have larger earnings losses than

those conceiving via IVF. These comparisons, however, do not isolate the causal

impact of delayed childbirth, as they conflate timing effects with heterogeneity in

parenthood effects across groups with different fertility intentions. My key contri-

bution is to provide the first causal estimates of parenthood timing, accounting for

selection on unobservables. My findings indicate that delaying parenthood miti-

gates the career costs of motherhood and highlight the potential role of policies

supporting later childbearing.

Within the literature on parenthood effects that abstracts from timing, the

closest studies exploit IVF success in Scandinavia (Lundborg et al., 2017, 2024;

Gallen et al., 2024; Bensnes et al., 2025). I contribute in three ways. First, I pro-

vide estimates that address the bias arising from the effects of parenthood timing.

Second, I leverage a common and minimally invasive treatment (IUI), often used

in cases of male-factor infertility, broadening the population covered by existing

results. Third, I provide evidence from the Netherlands, where parental leave and

childcare usage are close to OECD averages, in contrast to the generous family

policies in Scandinavia. This strengthens the external relevance of my findings.

Compared to IVF-based estimates, which suggest relatively small earnings reduc-

tions that fade over time, my results indicate larger and more persistent declines.

Instead, they are closer to the estimates of Gallen et al. (2024) for women who ex-

perience early unplanned births due to contraceptive failure. Since IUI births are

planned and typically occur later, this suggests that outside Scandinavia, where

family policies are less generous, women may experience larger losses.

My work also contributes to the literature on dynamic treatments. In biostatis-

tics, numerous methods have been developed to evaluate sequential experiments

under full compliance (see Hernán & Robins, 2020, for an overview). In economics,

Van den Berg & Vikström (2022) introduce an approach for settings where treat-

ment is assigned among eligible individuals dynamically and individuals selectively

exit eligibility. Heckman et al. (2016) and Han (2021) develop methods for settings

where treatments may also be obtained outside assignment, provided instruments

are available for each treatment margin. I contribute a method for settings where
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previously unassigned individuals selectively undergo additional assignments and

may obtain treatment outside assignment, potentially without valid instruments.

Beyond parenthood, such settings include education systems with admission lot-

teries; job-training programs that randomize access among applicants; legal set-

tings with random assignment to sanctioning authorities (e.g., judges or police

officers), and repeated sanctioning upon reoffending; and sequential clinical trials

with imperfect compliance.

My work also relates to the literature on bounds for treatment effects, begin-

ning with Manski (1989, 1990); Horowitz & Manski (1995), and in particular the

methods of Zhang & Rubin (2003) and Lee (2009). While bounding methods can

in principle be applied to virtually any treatment-effect setting, their main limita-

tion is that the resulting bounds are often too wide to be economically informative.

I contribute by showing how bounding techniques can be combined with sequential

quasi-experimental variation to obtain bounds that are strictly narrower and valid

for a broader population, without additional assumptions. This improvement is

crucial in application: existing methods adapted to separate treatment and timing

effects yield bounds for my main outcomes that are several times wider and fail

to rule out large positive or negative effects (Appendix SA1.1).

My work further relates to the literature on dynamic non-compliance with one-

time instruments (Cellini et al., 2010; Ferman & Tecchio, 2023; Angrist et al., 2024;

Gallen et al., 2024; Bensnes et al., 2025). These methods exploit initial treatment

assignment and repeated outcome measures to identify treatment effects when the

duration of treatment is the key factor. I contribute a complementary approach

that yields sharp bounds when effects may depend on both duration and timing.

My method also allows the importance of each dimension to be quantified and

can be implemented using cross-sectional data. I discuss this connection in more

detail in Section 3.

Finally, I contribute to the broader literature on parenthood and gender in-

equality in the labor market. This work includes studies that compare mothers

to fathers or to women who do not yet have children (Fitzenberger et al., 2013;

Angelov et al., 2016; Chung et al., 2017; Bütikofer et al., 2018; Kleven, Landais,

& Søgaard, 2019; Kleven, Landais, Posch, et al., 2019; Eichmeyer & Kent, 2022;

Kleven et al., 2024; Melentyeva & Riedel, 2023), as well as studies employing

structural methods (Adda et al., 2017; Jakobsen et al., 2022). By separately

quantifying the effects of parenthood, its timing, and other outcome differences

systematically correlated with these factors, my results clarify the mechanisms

underlying estimates that do not explicitly distinguish them.
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The remainder of the paper is structured as follows. Section 2 introduces a

framework for sequential quasi-experiments. Section 3 discusses existing methods,

presents intuition for my econometric approach, states the formal results, and

outlines estimation. Section 4 describes the institutions, intrauterine insemination,

and the data, and presents support for the assumptions. Section 5 presents the

results. Section 6 discusses generalizability and life-cycle implications. Section 7

concludes.

2 A Framework for Sequential Quasi-experiments

My framework generalizes the local average treatment effect (LATE) frame-

work (Angrist & Imbens, 1995) by making explicit how a treatment—parenthood—

depends not only on initial treatment assignment, such as the success of the first

IUI procedure, but also on subsequent decisions to pursue additional assignments

and their outcomes. While the method can be applied in various contexts, I focus

on IUI and parenthood as the leading example.

Since the analysis involves timing effects and sequential decisions, one could

formulate a dynamic framework describing when individuals choose to undergo

assignment and how this affects treatment take-up. However, this would entail

substantial notation and obscure connections to conventional methods. Instead,

to enhance clarity, I develop a cross-sectional framework summarizing the key

events and decisions between two points in time. Appendix SA2 presents a formal

mapping between the two frameworks, demonstrating that the cross-sectional ap-

proach does not sacrifice any conceptual insight or generality. Section 2.1 presents

the framework, and Section 2.2 covers interpretation details.

2.1 Setup

I consider a moment in time after a woman’s first IUI procedure and charac-

terize each woman by two latent variables. First, W ∈ {1, . . . , w} is the number

of IUIs she would have undergone for her first child so far if all prior IUIs had

failed, with an upper bound w; I refer toW as willingness to undergo IUI. Second,

R ∈ {0, 1} indicates whether she would have remained childless at this point if

all W IUIs had failed; I refer to R as reliance on IUIs. Women with R = 1 (re-

liers) rely on IUI to have children, while women with R = 0 (non-reliers) would

have become mothers if all IUIs had failed. The timing of IUI attempts and non-

IUI motherhood may be heterogeneous across women. Non-IUI motherhood may

include adoption, though this is almost nonexistent in the data.

Potential outcomes represent a woman’s earnings or work hours. I define Y1(1)

as the outcome if her first IUI succeeds (the treated outcome), Y0(0) if she remains

childless (the control outcome), and Y0(1) if her first IUI fails but she has a child
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later (the later-treated outcome). Motherhood may begin at different times after

the first IUI, but for my analysis, the relevant later-treated moment is when it

starts without any successful IUI attempts. This moment may be selective.

The first parameter of interest is the effect of parenthood, defined as the dif-

ference in potential outcomes between conceiving at the first IUI and remaining

childless after its failure: τ = Y1(1) − Y0(0). The second is the effect of par-

enthood timing, the difference between conceiving at the first IUI and conceiving

later: δ = Y1(1)−Y0(1). I discuss the nuances of interpreting timing effects in the

framework discussion section that follows.

The two main effects I focus on are the average treatment effect among reliers,

τATR = E[τ | R = 1], and the average timing effect among non-reliers, δANR =

E[δ | R = 0]. I motivate this focus in more detail in Section 3. Briefly, τATR

captures parenthood effects for the broadest group whose fertility depends on IUI

success, while δANR corresponds to the largest timing shift induced by IUI sequence

success—conception on the first attempt rather than after the full IUI sequence.

The observed indicator for the success of the jth IUI for the first child is Zj,

which equals 1 if the procedure succeeded and 0 if it failed or was not undertaken.

The first key variable linking observable and latent variables is the realized number

of IUIs, A = min ({j : Zj = 1} ∪ {W}), where a woman undergoes IUIs until one

succeeds or until reaching her maximum willingness. The last IUI outcome is ZA.

The second key variable is the parenthood (treatment) indicator D = ZA +

(1−ZA)(1−R), where a woman becomes a mother if an IUI succeeds or if she is a

non-relier who conceives independently of IUI success. A woman’s realized labor

market outcome is Y = Y1(1)Z1 + (1− Z1)DY0(1) + (1− Z1)(1−D)Y0(0), which

depends on whether she conceived at the first IUI, after the first IUI, or not at all.

After introducing the core method, I also leverage information on non-IUI

births among women whose first IUI succeeds. R+ ∈ {0, 1} is a latent indicator of

whether a woman is reliant on IUI for all additional children after conceiving her

first child via IUI. Women with R+ = 1 (subsequent reliers) would have only IUI-

conceived children after conceiving their first via IUI, whereas those with R+ = 0

would also have one or more non-IUI children.

The indicator for having at least one non-IUI child is D+ = ZA(1−R+)+ (1−
ZA)D, where a woman has at least one such child if an IUI succeeded and she is

not a subsequent relier, or if all IUIs failed and she had a child regardless.

2.2 Framework Interpretation and Discussion

In this subsection, I discuss the interpretation of reliance, willingness, and

timing effects, and connect my framework to the LATE framework.
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Willingness and reliance are formal constructs and need not admit a direct

economic interpretation. They serve as primitives that summarize all endogeneity

in the realized number and timing of IUIs and in non-IUI fertility relevant for

identification. These variables can reflect perfect foresight or a dynamic process

in which women update their IUI and natural conception decisions as new infor-

mation becomes available. Plans may change in response to earlier procedures,

medical advice, career changes, or natural conception. Willingness captures the

number of IUIs a woman would complete up to a given point in time if all IUIs fail,

while reliance captures whether she would have become a mother by that point

under the same counterfactual, irrespective of how these outcomes arise.

The average timing effect among non-reliers reflects a weighted average of het-

erogeneous shifts in fertility timing. All non-reliers whose IUIs fail conceive be-

tween the first IUI and the evaluation date, although the timing may vary across

women. Because the timing of both the first IUI and conception is observed, the

average effect of IUI failure on fertility timing can be identified. However, the

counterfactual delay is unobserved among women whose first IUI succeeds. Con-

sequently, only average outcomes for conceiving at the first IUI can be compared

with outcomes for conceiving later, with “later” varying across women. A formal

characterization of timing effects is provided in Appendix SA2.

The timing effect bundles several mechanisms. Shifts in fertility timing simul-

taneously change the mother’s age at first birth, career stage, and the calendar year

of childbirth, and may also affect completed fertility. Accordingly, the estimated

timing effect should be interpreted as the total effect of delaying childbearing.

Disentangling these channels would require strong additional assumptions such as

additivity and effect homogeneity between women and is not pursued.

The timing effect admits two interpretations, depending on outcome measure-

ment. When outcomes are measured at a given time since the first IUI, it captures

the contemporaneous effect of having become a mother earlier versus more recently.

When outcomes are measured cumulatively up to a given time, the timing effect

additionally incorporates the impact of parenthood relative to childlessness during

periods in which delayed conception has not yet occurred.

Reliers are related to compliers in the LATE framework. Compliers (C = 1)

conceive only if their first IUI succeeds, whereas always-takers (C = 0) conceive

regardless of the outcome. Reliers include all compliers and those always-takers

who would conceive through later IUIs if the first failed but remain childless if

all IUIs failed. Formally, let Zj(0) denote the indicator for the success of the

jth IUI in a scenario where all previous IUIs fail; then C = R
∏W

j=2(1 − Zj(0)).

10



Focusing on reliers both delivers results for a broader population and, as discussed

in Section 3, yields substantially more informative estimates.

Like compliance, willingness and reliance are defined cross-sectionally: at any

given moment, reliers are those who would remain childless if all IUIs up to that

point had failed. This carries two important implications. First, for parenthood ef-

fects, comparing estimates by year since the first IUI reflects compositional changes

in the relier group. Appendix SA1.2 extends the method to focus on women who

would permanently remain childless if all IUIs failed, ensuring that estimates cover

the same group in each period and addressing potential bias from anticipating par-

enthood. Results remain similar to the baseline.

Second, for timing effects, comparing estimates by years since the first IUI

also changes the average delay studied. As more natural births occur, the average

delay among those who have already given birth increases (see Appendix SA2 for

formal results). This is of limited empirical relevance because my analysis focuses

on periods in which the relier group stabilizes.

In practice, not all IUIs may be observed by the researcher. As will become

clear below, classifying births from unobserved IUIs as non-IUI births will not

introduce bias, as these cases will be addressed in the bounding step by assuming

worst-case selection. However, the more births that are handled through bounding,

the wider the resulting treatment effect bounds. Conversely, the more births that

can be attributed to IUIs—either due to more complete data or because few births

occur without IUIs—the fewer cases require bounding, resulting in tighter bounds.

3 Econometric Approach

Section 3.1 introduces the central assumption. Section 3.2 describes the lim-

itations of conventional methods. Section 3.3 presents the intuition behind my

approach. Section 3.4 formalizes the procedure. Section 3.5 outlines estimation.

3.1 Local sequential unconfoundedness

To formalize the intuition, I introduce the following assumption.

Assumption 1 (Local sequential unconfoundedness). (Yz(d), R,W ) |= Zj | A ≥ j, for all

z, d, j.

This assumption states that, among women who undergo IUI attempt j, the

success of that attempt is effectively random—independent of potential outcomes

and individual type. This aligns with the standard unconfoundedness assumption

used in studies exploiting IVF, where pregnancy conditional on embryo transfer

is assumed to be random. Unlike those settings, however, the assumption here

applies not only to the first procedure but also to all subsequent attempts.
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To simplify exposition, I abstract from covariates. The main method in Sec-

tion 3.4 allows IUI success rates to vary flexibly with observables, with age at the

time of each procedure as the primary determinant. It also accommodates addi-

tional covariates that could proxy for unobservables shaping success rates—such

as calendar time, time since the previous attempt, education, or current labor

market outcomes. These covariates may themselves be endogenous: for example,

women may choose the age at which they initiate a second attempt. Success rates

may further vary across attempts for both medical and behavioral reasons.

Crucially, Assumption 1 concerns only the success of each individual proce-

dure (Zj), conditional on the procedure—i.e., insertion of sperm into the uterus—

occurring (A ≥ j). It places no direct restrictions on the decision to undergo

additional IUI attempts or on their timing, nor on natural conception attempts.

In particular, the assumption is silent about women who do not undergo at-

tempt j (A < j): selection into reaching attempt j (and attempt timing) may

depend on observed and unobserved determinants of outcomes. Consequently,

women who undergo more than j attempts may form a selected sample: for exam-

ple, women with lower career potential may be more likely to continue treatment.

Decisions to continue IUI or attempt natural conception may also respond to

observable and unobservable shocks realized between attempts that affect labor

market outcomes. Women may postpone or cancel planned treatment following

a health shock, a career change, adverse experiences with earlier procedures, or

planned or unplanned natural conception. Importantly, the assumption requires

only that, among women who selectively undergo a given procedure (at a given

age), IUI success at this attempt is independent of future shocks.

Although the assumption is not testable, women have little direct control over

IUI success once sperm is inserted. Medical evidence on the relevance of psy-

chological factors such as stress and anxiety (see Frederiksen et al., 2015, for an

overview), as well as lifestyle factors such as diet and physical activity (see Boedt

et al., 2019, for an overview), is mixed. Crucially for the analysis in this paper,

there is consensus that—even if these factors play a role—their effects on success

rates are small. Thus, even if these factors are correlated with the latent outcomes,

any resulting imbalance and bias in the estimates should be limited.1

The primary concern for the assumption is therefore that success may be cor-

related with latent health differences that also shape labor market outcomes and

1One could bound the resulting bias by imposing bounds on success proba-
bilities and their correlation with outcomes, but this is not pursued given the
conservative nature of the approach developed in this paper.
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the willingness to continue treatment, such as obesity. I provide two pieces of

empirical support for the assumption in Section 4.4. First, if IUI success were

correlated with latent health conditions that also affect labor market outcomes,

one might expect such differences to be reflected in pre-IUI outcomes; I find no

such patterns, either at the first attempt or at later attempts, suggesting that

success remains independent of potential labor market outcomes throughout the

treatment sequence.

Second, if women selectively continue treatment based on differences in ex ante

success probabilities, success rates might be expected to change across attempts as

the sample becomes increasingly selected. Instead, I find that per-attempt success

rates are stable across attempts. Thus, prior success likelihood does not appear

correlated with continuation decisions.

More generally, the approach can also accommodate an alternative assumption

that allows success rates to correlate with willingness and reliance, provided these

variables are uncorrelated with potential outcomes. For example, some women

may eventually learn they were sterile—implying zero success probability even at

the first attempt. This does not affect identification as long as sterility itself is

uncorrelated with potential outcomes. The absence of systematic relationships be-

tween pre-IUI labor market outcomes and success rates supports this assumption.

In practice, willingness and reliance may reflect a mixture of factors: some

components—such as family values—may be correlated with potential outcomes,

while others—such as sterility—are orthogonal to them. The approach remains

valid as long as the latter component drives any correlation with success rates.

Finally, it is worth noting that local sequential unconfoundedness is effectively

assumed in conventional approaches that rely solely on the first IUI attempt.

Identification in that setting requires complier status to be independent of first-

attempt success. As formalized in Section 2.2, however, complier status is itself a

function of relier status, willingness, and potential future attempt outcomes. The

present framework makes these dependencies explicit.

3.2 Limitations of Standard Methods

The IV approach uses the success of a woman’s first IUI as an instrument

for parenthood. It starts with the reduced form: the difference in average out-

comes between those whose first IUI succeeded and those whose first IUI failed:

λRF = E[Y |Z1 = 1]− E[Y |Z1 = 0]. The reduced form compares women who con-

ceived at their first IUI to a mixed group of childless women (compliers) and women

who had children later (always-takers). Following Angrist & Imbens (1995), un-

der unconfoundedness, the reduced form identifies an average of two effects: the

13



average treatment effect for compliers and a timing effect for always-takers:

λRF = E[Y1(1)− Y0(0) | C = 1]Pr(C = 1) + E[Y1(1)− Y0(1) | C = 0]Pr(C = 0) (1)

= E[τ | C = 1]Pr(C = 1) + E[δ | C = 0]Pr(C = 0). (2)

Scaling the reduced form by the first stage—the difference in the share of mothers

between the two groups, which identifies the complier share—yields:

E[Y | Z1 = 1]− E[Y | Z1 = 0]

E[D | Z1 = 1]− E[D | Z1 = 0]
= E[τ | C = 1] + E[δ | C = 0]

Pr(C = 0)

Pr(C = 1)
. (3)

The standard IV exclusion restriction implies that effects do not depend on timing,

meaning δ = 0. In this case, the second term on the right hand side of (3) drops

out and the average treatment effect for compliers is identified. Otherwise, the

second term biases the IV estimator.

The bias direction is ambiguous: career costs may be underestimated if younger

children require more care or if delayed parenthood occurs at a less optimal career

moment (Y0(1) < Y1(1)), and overestimated if early motherhood causes lasting

career setbacks (Y0(1) > Y1(1)). The extent of the bias depends on the scaling

factor Pr(C = 0)/Pr(C = 1). In the context of IUI (and IVF; Lundborg et al.,

2017), 75% of women whose first procedure fails eventually have children, meaning

Pr(C = 0) = 0.75 and Pr(C = 0)/Pr(C = 1) = 3. This implies that even small

timing effects in Equation (3) are amplified and can introduce non-negligible bias.2

One potential source of bias is that women who conceive earlier are mothers

for longer, and effects may depend on the duration of parenthood. Gallen et al.

(2024) and Bensnes et al. (2025) address this using a recursive IV approach, which

assumes that effects are driven primarily by duration. Under this assumption,

short-run effects are first estimated using standard IV and then used to adjust

long-run estimates for differences in treatment duration across groups.

The key difference between conventional IV and recursive IV is that the for-

mer allows effects to vary with life-cycle stage (e.g., the woman’s age), while the

latter allows them to vary with treatment duration (e.g., the child’s age). Both

approaches, however, face challenges when treatment timing matters (e.g., career

stage at birth).3 For example, if motherhood before age 30 permanently reduces

annual work hours by 50, while motherhood after 30 reduces them by 100, it can

be shown that both methods would imply reductions of less than 50 hours. In

general, estimates from the two approaches may point in opposite directions, but

2This can be described in terms of negative weights (see Bensnes et al., 2025).
3If effects varied only with age and were otherwise homogeneous, variation in

procedure timing could be used to adjust the estimates. However, both treatment
and timing effects may depend on unobservables, making this infeasible.
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both can ultimately be expressed as weighted averages of parenthood and timing

effects, including negative weights on later-treatment effects.

Bensnes et al. (2025) show that recursive IV estimates differ markedly from

conventional IV, illustrating that existing evidence hinges on whether effects vary

with duration, life-cycle stage, or timing. In Appendix SA1.1, I replicate this di-

vergence and compare my estimates to both approaches. I find that the timing of

motherhood plays an important role. Next, I present my method, which circum-

vents restrictions on timing effects while also allowing treatment effects to vary

arbitrarily with treatment duration and across the life cycle.

3.3 Intuition for the Econometric Approach

I proceed in three steps. First, I describe the intuition behind the method.

Second, I outline the key elements of the identification argument. Finally, I intro-

duce regularity conditions and an assumption allowing IUI success rates to depend

on covariates, and then state the formal results.

To illustrate the intuition behind the method, note first that the distribution of

treated outcomes is straightforward to identify. Under random IUI success, women

whose first IUI attempt succeeds form a random sample of the population, and

their treated outcomes are directly observed. The first objective of the approach

is to identify average control outcomes for as large a share of the population as

possible. If this can be achieved for a near-population, one can compare average

treated outcomes for the full population with average control outcomes for the

near-population.

While this comparison approximates the average treatment effect, it may still

be affected by compositional differences between the two groups. However, be-

cause the groups differ only by a small subset of individuals, the contribution of

such differences is limited. Moreover, this contribution can be bounded without

additional assumptions by considering extreme selection scenarios into the near-

population, yielding a narrow range of possible average treatment effects.

The next question is which is the largest group for which average control out-

comes can be identified. When using only the first IUI attempt, this group consists

of compliers—those whose parenthood status depends on first-attempt success.

Because this group is often small, it can differ substantially in composition from

the full population, leading to economically uninformative bounds on possible

average treatment effects (see Appendix SA1.1).

One of the main contributions of this paper is to show that by exploiting vari-

ation across subsequent IUI attempts, it is possible to identify average outcomes

for reliers—those whose parenthood status depends on the entire IUI sequence.
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Existing methods cannot do this, as they cannot account for selective participation

in subsequent IUIs or for conceptions occurring outside the IUI process.

Because this group is necessarily larger, the possible composition difference

from the full population is smaller, resulting in narrower bounds on average effects.

Focusing on reliers is therefore appealing not only because they form a more

general group than compliers, but also because it yields more informative results.

The informal identification intuition is as follows. Because each IUI attempt

succeeds randomly, every woman has a positive ex ante probability of never ex-

periencing IUI success. Although this probability is unobserved, if it were known

one could reweight women who never experience IUI success to construct a sample

with representative latent outcomes. Since this sample is observed under a coun-

terfactual in which all IUIs fail, it would allow identification of average outcomes

in that scenario.

This probability depends on two factors: first, the per-attempt IUI success rate

(conditional on covariates at the time of each attempt) and, second, the number of

IUIs a woman would undergo in the event of repeated failure. While per-attempt

IUI success rates can be identified directly from the data, how many attempts a

woman would undergo in case of failure cannot be observed.

The key observation is that this probability is nevertheless identifiable for

women who never experience IUI success. Among these women, the number of

attempts they would undertake in the event of failure coincides with the realized

number of attempts, which is observed. Together with the identified success rates

at each attempt, this allows the construction of a representative sample under the

scenario of universal IUI failure.

Within this sample, reliance on IUI is observed: it is known who becomes a

mother after IUI failure and who does not, and control outcomes for non-reliers

are observed. This permits identification of both the average control outcome for

this group and its population share.

The remaining step is to characterize the average treated outcome for reliers.

Treated outcomes are only observed among women whose first IUI succeeds. Be-

cause it is not known which of these women are reliers, the treated outcome for

reliers is not point-identified. However, since the share of reliers within this group

is identified, their average treated outcome can be bounded. Specifically, this is

done by considering extreme scenarios in which reliers have either the highest or

the lowest treated outcomes among women whose first IUI succeeds.

Following a similar argument, the average outcome in the IUI failure scenario

can be identified for the full sample. This average is a weighted combination

16



of control outcomes for relier women and later-treated outcomes for non-reliers,

with weights given by their population shares. Comparing this estimand to the

average treated outcome yields a weighted average of treatment effects for reliers

and timing effects for non-reliers. Combining this estimand with the bounds on

treatment effects for reliers yields bounds on timing effects for non-reliers.

Next, I describe each part of the identification argument in more detail.

3.3.1 Relier Average Control Outcome

To demonstrate how the relier average control outcome can be identified, I first

express it as a weighted average of childless outcomes among reliers with different

willingness to undergo IUIs, and then explain how each term in this expression is

identified:

E[Y0(0) | R = 1] =
w∑

w=1

E[Y0(0) |W = w,R = 1]Pr(W = w | R = 1). (4)

I will argue that women who underwent exactly w IUIs and remained childless

form an as good as random sample of reliers willing to undergo w IUIs, allowing

identification of the average control outcome for such reliers using the average

observed outcome in this group:

E[Y | A = w,D = 0] = E[Y0(0) |W = w,R = 1]. (5)

This is because, first, the observed women must be reliers willing to undergo

exactly w IUIs, since non-reliers would have children, and women willing to pursue

more than w IUIs would have done so. Second, for such reliers, experiencing w

failed IUIs is effectively random: since they all have the same willingness, this is

determined solely by the success or failure of the first w procedures, each of which

is as good as random.

I identify the shares of different types following a similar argument. Women

who experience at least w failed IUIs form an as good as random sample of those

willing to undergo at least w IUIs. Thus, the share of these women initiating an

additional IUIs identifies the share willing to undergo at least w + 1 IUIs among

those willing to undergo at least w IUIs:

Pr(A ≥ w + 1 | A ≥ w,Zw = 0) = Pr(W ≥ w + 1 |W ≥ w). (6)

Similarly, women who do not undergo an additional IUIs after w failed IUIs

form an as good as random sample of those willing to undergo exactly w IUIs.

Thus, the share of these women who remain childless identifies the share of reliers

willing to undergo w IUIs:

Pr(D = 0 | A = w,Zw = 0) = Pr(R = 1 |W = w). (7)

Combining these conditional probabilities I can construct Pr(R = 1,W = w) for

all w, meaning that the shares of all types are identified.
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3.3.2 Relier Average Treated Outcome

Having identified the average relier control outcome, one can proceed in two

ways. When outcomes have bounded support, the average control outcome of

non-reliers can be bounded by assigning them extreme values, yielding bounds on

the average treatment effect. However, such bounds can be very wide. Instead,

I bound the average treated outcome for reliers to obtain bounds on the average

effect for this group. This approach yields tighter bounds by exploiting the data

rather than relying on outcome support.

I start from the observation that, since IUI outcomes are as good as random,

the outcome distribution among women whose first IUI succeeded represents the

full distribution of treated outcomes in the IUI sample. Using the relier share

identified in the previous step, I construct worst-case bounds by assuming that

reliers are those with the highest or lowest treated outcomes. For instance, suppose

100 women had a successful first IUI and the relier share is 80%. It is not known

which 80 are reliers, but I can obtain the upper (lower) bound on their average

outcome by taking the average of the top (bottom) 80 outcomes.4

I then refine the bounds by incorporating pre-IUI covariates. Suppose that

after splitting the sample by pre-IUI earnings, each group is estimated to have

an 80% relier share. Selecting the bottom 80% of outcomes among women whose

first IUI succeeded, without accounting for pre-IUI earnings, may yield a set of

potential reliers whose pre-IUI earnings are inconsistent with the group-specific

shares. Because this selection produces the most conservative lower bound, any

alternative selection can only raise it. To construct the refined bounds, I identify

the relier share within each pre-IUI earnings group and select the corresponding

share of the lowest and highest treated outcomes in that group.

I can further narrow the bounds only by imposing assumptions on which women

are (not) reliers. For example, it may be reasonable to assume that women who

have a second or third child without IUI after having their first through IUI would

have had at least one child even if all IUIs had failed—or, equivalently, that women

who are reliant on IUI for their first child are also reliant for subsequent children.

To see how this helps narrow the bounds, consider the previous example. If 10

of the 100 women whose first IUI succeeded subsequently have a non-IUI child,

they can be excluded from the pool of potential reliers, as they are certainly not

4Trimming outcome distribution tails to bound subgroup averages follows the
logic of Zhang & Rubin (2003) and Lee (2009). The innovation lies in using this
idea together with sequential assignment, yielding narrower bounds that apply to
a broader subpopulation (see Appendix SA1.1).
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reliant on IUI. Selecting the 80 lowest (highest) outcomes from the remaining 90

can only yield a higher (lower) average than selecting from the full set of 100.

Assumption 2 (Subsequent reliance monotonicity). R+ ≥ R.

The monotonicity condition ensures that women whose first IUI succeeded and

who have any non-IUI children, and are therefore not subsequent reliers, are also

not reliers. This allows them to be excluded from the pool of potential reliers used

to construct the bounds.

One way to interpret the monotonicity condition is that families are more

determined to have a first child than additional ones. From a fertility-choice

perspective, it rules out couples who prefer multiple children but would rather

have none than only one. This restriction seems reasonable, as couples who initiate

IUI intend to have at least one child and are likely aware that they may not be

able to have multiple.

However, fertility may not be entirely determined by choice. For example,

having a first child may improve relationship stability or mental health relative to

failing to conceive, leading to more natural conception attempts. This may lead

to non-IUI births that would not have occurred had the first IUI failed, thereby

violating monotonicity. I relax the assumption to address this in Section SA1.10.

The monotonicity assumption also yields testable implications, namely that

the subsequent relier share at each covariate value exceeds the relier share. I

present the testing procedure and results in Appendix SA1.3. In Appendix SA1.4,

I also report estimates based on a relaxed specification that allows the direction

of monotonicity to vary with covariates. Monotonicity is not rejected, and the

estimates under the alternative assumption remain similar.

The remaining results assume monotonicity. In settings without variables that

can credibly help identify reliers, sharp bounds without monotonicity (i.e., under

trivial monotonicity) can be obtained by redefining R+ = 1 and D+ = (1−ZA)D,

thus treating everyone as subsequent reliers.

3.3.3 Interpreting the Uncertainty in the Bounds

The bounds on the relier average treatment effect are obtained by subtracting

the identified relier average control outcome from the bounds on their average

treated outcome. Before proceeding, it is useful to clarify what uncertainty these

bounds do and do not reflect.

The bounds capture uncertainty about selection into treatment absent assign-

ment. In the IUI context, this refers to who would conceive naturally if all pro-

cedures failed (conditional on pre-IUI covariates and subsequent relier status). If
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natural conception among IUI couples is partly random, the true effect lies within

a narrower range than the conservative bounds; if entirely random, it is near the

midpoint. More generally, the bounds shrink exactly in proportion to the share of

random versus selective births. This share may be substantial in the IUI setting,

as all couples are trying to conceive and natural conception after failed procedures

is largely a matter of luck.

Importantly, the treatment effect bounds contain no information about the

magnitude of timing effects, as they rely only on treated outcomes for those as-

signed treatment at baseline and on control outcomes. With this distinction, I

now turn to timing effects.

3.3.4 Timing Effects and Treatment Effect Identification Without Timing

As a starting point for assessing timing effects, I first show how to point-identify

τATR under assumptions equivalent to the IV approach. Let Y ∗
0 = Y0(0)R +

Y0(1)(1−R) denote the outcome when all IUIs fail. For reliers, this is the control

outcome; for non-reliers, it is the later-treated outcome. Similar to Section 3.3.1,

the willingness-conditional average of Y ∗
0 can be identified using women who un-

derwent w unsuccessful IUIs: E[Y | A = w,Zw = 0] = E[Y ∗
0 | W = w]. Averaging

overW using identified type shares gives E[Y ∗
0 ]. Subtracting this from the average

treated outcome, and scaling by the relier share yields:

E[Y1(1)− Y ∗
0 ]

Pr(R = 1)
= τATR + δANR

Pr(R = 0)

Pr(R = 1)
. (8)

I refer to this as the sequential IV estimand: since it uses a sequence of IUI

attempts to identify an estimand similar to the IV in Equation (3) of Section 3.2,

but targeting reliers instead of compliers. Under the IV exclusion restriction (δ =

0), sequential IV identifies τATR. When δ ̸= 0, it no longer identifies τATR, but

the bias is attenuated relative to the IV because the timing term is weighted less:

non-reliers are a subset of always-takers, so Pr(R = 0)/Pr(R = 1) ≤ Pr(C =

0)/Pr(C = 1).

Crucially, the sequential IV estimand need not be contained within the bounds.

This is more likely to occur when timing effects are large and/or when variation in

treated outcomes among sequential reliers is largely explained by past covariates

(e.g., past income), resulting in narrow bounds. Comparing the estimand to the

bounds thus offers a test of the exclusion restriction: under the restriction, it

should lie within the bounds; otherwise, δ ̸= 0. Furthermore, since the relier share

is identified, bounds on τATR can be directly translated into bounds on δANR using

Equation (8). These bounds are my main focus; I present separate sequential IV

estimates in Appendix SA1.1 when assessing bias in conventional methods.

Finally, it is worth noting that similar reasoning can be applied to bound
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timing effects across subpopulations and treatment moments. For example, one

could bound the average timing effect for individuals willing to undergo at least two

procedures by first identifying the later-treated outcomes using those who conceive

at their second attempt, and then bounding their average treated outcome using

the same logic as before.

However, focusing on conception at the first versus the second attempt may

reveal little about timing, since these events often occur only a month apart. The

advantage of focusing on non-reliers is that it captures the largest possible timing

shift due to IUI success: conceiving at the first IUI versus only after all IUIs fail.

3.4 Formal Identification Statement

This section formalizes the results introduced in the previous section. As be-

fore, the outcome (Y ) and parenthood status (D) are measured at a specific time

(e.g., year) since a woman’s first IUI, while the IUI attempt count (A) and attempt

outcomes (Zj) summarize what happened between the first IUI and the evaluation

date. I introduce the conditional local sequential unconfoundedness assumption:

Assumption 3 (Conditional local sequential unconfoundedness).

(Yz(d), R
+, R,W ) |= Zj | Xj , A ≥ j for all z, d, j, and Xj ∈ Xj.

Xj ∈ Xj are covariates measured at assignment j, such as age at the time of the

procedure, time since the last procedure, and other observables. In words, the

success of IUI j is independent of potential outcomes and type, conditional on

undergoing at least j IUIs and on these covariates. Note that the measurement

timing of Xj may vary across women and be correlated with potential outcomes:

it is determined by when they choose to undergo each procedure. The next as-

sumption provides regularity conditions. Let ej(x) = Pr(Zj = 1 | Xj = x,A ≥ j).

Assumption 4 (Regularity).

1. 0 < e < ej(x) < e < 1 for all j and x ∈ Xj, for some fixed e and e.

2. Y has a probability density function for Z1 = 1, D+ = 0, and all x ∈ X1.

It contains two parts. First, the probability of IUI success conditional on under-

going the procedure and covariates at the time differs from 0 and 1. Second, Y is

a continuous random variable conditional on the first IUI succeeding, having only

IUI children, and any value of X1. Adding a negligible amount of continuously

distributed noise to Y is sufficient to avoid ties in trimming with minimal bias.

The bounding procedure begins with identifying several nuisance functions

involved in the trimming step. First, the covariate-conditional relier share is iden-

tified using the share of women without children among those whose IUIs failed:

r(x) = E
[
(1−D+)ΠA

j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣X1 = x

]
. (9)
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Because the denominator decreases in A, women who undergo more IUIs re-

ceive larger weights, correcting for their lower likelihood of never experienc-

ing IUI success and thus their underrepresentation in this group. Next, the

covariate-conditional share of subsequent reliers is identified from the share of

women having only IUI children among those whose first IUI succeeded r+(x) =

E [1−D+ | Z1 = 1, X1 = x]. Under monotonicity, the covariate-conditional share

of reliers among subsequent reliers is then p(x) = r(x)/r+(x).

The covariate-conditional quantile function of the treated outcome distribution

among subsequent reliers is identified from the outcome distribution of women

whose first IUI succeeded and who have only IUI children:

q(u, x) = inf
{
q : u ≤ Pr(Y ≤ q | X1 = x,Z1 = 1, D+ = 0)

}
. (10)

Finally, q(p(x), x) and q(1 − p(x), x) identify the covariate-conditional p(x)-th

and 1 − p(x)-th quantiles of the treated outcome distribution among subsequent

reliers. These quantiles are used to trim the outcome distribution and select reliers

in scenarios where they have either the lowest or highest treated outcomes.

The nuisance functions are combined with the data to construct the moments:

mL(G, η0) = Y (1−D+)1{Y <q(p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)ΠA

j=1

(1− Zj)

(1− ej(Xj))
(11)

mU (G, η0) = Y (1−D+)1{Y >q(1−p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)ΠA

j=1

(1− Zj)

(1− ej(Xj))
,

(12)

where vector G contains observed variables and η0 contains the nuisance func-

tions:

η0(x1, . . . , xA) = {r+(x1), r(x1), q(p(x1), x1), q(1− p(x1), x1), e1(x1), . . . , ew(xw)}.
(13)

The first term in mL(G, η0) is used to bound the relier average treated outcome.

It assigns positive weights to women whose first IUI succeeded, who have only IUI

children, and whose outcomes fall below the trimming threshold q(p(x), x). The

second term, used to identify the relier average control outcome, assigns positive

weights to outcomes of childless women. Larger weights are given to women who

underwent more IUIs to account for the fact that reliers willing to undergo more

IUIs are less likely to not experience IUI success, making them underrepresented in

this group. mU(G, η0) mirrors this for the scenario where reliers have the highest

treated outcomes. The moments are then scaled by the relier share.

Theorem 1 (Bounds on the Treatment Effect). Under Assumptions 2, 3, and 4,

sharp lower and upper bounds on τATR are given by θL = E[mL(G, η0)]/E[r(X1)]

and θU = E[mU(G, η0)]/E[r(X1)].
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Proof. See Appendix A1.

The next moment is used to identify the sequential IV estimand, which equals

the relier average treatment effect under the assumption of no timing effect:

mS(G, η0) = Y
Z1

e1(X1)
− YΠA

j=1

(1− Zj)

(1− ej(Xj))
(14)

Theorem 2 (Identification in the Absence of Timing Effect). Under Assumptions

3 and 4, and if δ = 0 a.s., then τATR = E[mS(G, η0)]/E[r(X1)].

Proof. See Appendix A1.

Finally, the moments for bounding the average timing effect for non-reliers are

constructed by combining the moment used to identify the sequential IV estimand

with the moments used to bound the relier average treatment effect:

Theorem 3 (Bounds on the Timing Effect). Under Assumptions 2, 3, and

4, sharp lower and upper bounds on δANR are given by γL = E[mS(G, η0) −
mU(G, η0)]/E[1− r(X1)] and γU = E[mS(G, η0)−mL(G, η0)]/E[1− r(X1)].

Proof. See Appendix A1.

3.5 Estimation

The bounds can be estimated by replacing the expectations and nuisance func-

tions in the theorem with their empirical counterparts. However, inference for such

estimators is complicated by their sensitivity to first-stage estimation error in the

conditional quantile function, which itself must be estimated nonparametrically.

If overly conservative—i.e., non-sharp—bounds are acceptable, one can over-

come this challenge by restricting attention to discrete covariates or by partitioning

continuous covariates into bins. In that case, covariate-conditional bounds can be

estimated separately within each covariate cell and then aggregated. Asymptotic

normality and a consistent estimator of the asymptotic variance then follow from

conventional GMM results.

Ensuring sharp bounds, however, requires using all available covariates, in-

cluding continuous ones, making such an approach infeasible. To address this

challenge, I draw on insights from Semenova (2025), who develops an estimator

for the Lee (2009) bounds, which also rely on conditional quantiles.

The method combines orthogonalization with sample splitting. I adapt this

approach by constructing new orthogonal moment functions for my bounds, pre-

sented in Appendix A2. These moments satisfy the key conditions under which

Semenova (2025) establishes the validity of standard GMM inference, as if the

nuisance functions were known.
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The moments in this paper generalize those in Semenova (2025) by incorporat-

ing the sequential structure of my procedure. This shifts the focus from compliers

to reliers and requires additional correction terms for sequential propensity scores.

When only the first IUI attempt is used, rather than the full sequence, variables

can be mapped directly between the two frameworks, and the resulting moment

conditions are equivalent to those in Semenova (2025).

I highlight only the most relevant implementation choices here and refer to Ap-

pendix A2 for details. I use 3-fold cross-fitting, estimating the nuisance functions

for each third of the sample using the remaining two-thirds. Propensity scores

are estimated using logistic regressions. The key covariates are women’s and their

partners’ ages at the time of the procedure, each included as a second-order poly-

nomial. Because success rates vary smoothly with age, I adopt this specification

rather than age fixed effects, which ensures robustness to sparsely populated age

bins in later attempts. The results are insensitive to this choice (not reported).

Following Heiler (2024), I estimate the remaining nuisance functions using

Generalized Random Forests (Athey et al., 2019), including all propensity-score

covariates up to the current procedure and, for both partners, work hours and

earnings in the year prior to the first IUI. Because past outcomes strongly predict

future outcomes, these covariates are most important for obtaining narrow bounds.

Including age at the current and previous attempts is equivalent to controlling for

the time between attempts. Confidence intervals follow Stoye (2020).

I use data on the first ten procedures, which makes the bounds only negligibly

wider than if additional procedures were included, while avoiding the need to

estimate nuisance functions on small subsamples of women who undergo more

than ten (fewer than 7% of the sample). This means that reliers are women who

would not have a child if their first ten observed procedures failed. Varying the

number of procedures used between 8 and 12 has little impact (not reported).

4 Institutions, Intrauterine Insemination, and Data

Section 4.1 describes Dutch family policies and the labor market context. Sec-

tion 4.2 discusses IUI. Section 4.3 overviews the data and compares the IUI sample

to a representative sample. Section 4.4 provides empirical support for the uncon-

foundedness assumption and documents procedure profiles and birth timing.

4.1 Family Policies in the Netherlands

Dutch women are entitled to 4 to 6 weeks of pregnancy leave before the due date

and at least 10 weeks of maternity leave following childbirth, totaling a minimum

of 16 weeks. In the case of multiple births, the total entitlement increases to

20 weeks. During this period, mothers receive full wage replacement from the
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unemployment insurance agency, subject to a daily maximum. In the sample

period, fathers are entitled to one week of fully paid leave within the first four

weeks after childbirth, financed by the employer.

Children can enroll in private daycare at three months old. In 2022, 72%

of children under two attended formal child care, averaging 20 hours per week

(OECD, 2023a). After turning four and starting elementary school, they become

eligible for out-of-school care. In 2023, families using child care paid an average of

8,950 euros, of which 64% was reimbursed by the government, resulting in a net

cost equivalent to 10% of median disposable household income.5

The Netherlands has average family policies compared to other OECD coun-

tries. Paternity and maternity leave durations are slightly below the OECD av-

erages of 2.5 and 21 weeks, respectively (OECD, 2023c). While formal child care

enrollment for children under two is the highest among OECD countries, average

time spent in care is the lowest (OECD, 2023a). After age four, enrollment rates

and out-of-school care hours align with OECD averages (OECD, 2022).

While employment rates for mothers, fathers, and non-parents in the Nether-

lands exceed their respective OECD averages, part-time work is far more common,

making average hours worked comparable to the OECD average (OECD, 2023b).

In 2021, the maternal employment rate was 80%, compared to the OECD average

of 71%. However, in 2023, 52% of women and 18% of men worked part-time (less

than 30 hours per week), more than twice the respective OECD averages (OECD,

2023d). Among two-parent families, only 14% had both parents working full-time,

52% had a full-time working father and a part-time working mother, and 12% had

both parents working part-time.5

4.2 Assisted Conception Procedures

My analysis focuses on Dutch couples who undergo IUI for their first child. As

in most countries, the procedure is usually a first-line treatment for couples who

are unable to conceive naturally within a year, especially in cases of male-factor

or unexplained infertility. Prior to the procedure, women typically undergo cycle

tracking and may receive hormonal stimulation to enhance egg production. During

IUI, sperm is injected directly into the uterus via a catheter, mimicking natural

conception by facilitating fertilization within the body. With a success rate of

about 10% per attempt, the procedure is minimally invasive, typically lasting five

minutes and causing little or no discomfort.

Some couples who do not succeed with IUI eventually proceed to IVF, which

5Source: Statistics Netherlands.
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has previously been used to study the career impact of parenthood in Denmark,

Norway, and Sweden (Lundborg et al., 2017, 2024; Gallen et al., 2024; Bensnes

et al., 2025). IVF is a surgical procedure in which eggs are retrieved through

the vaginal wall, fertilized in the laboratory, and transferred as embryos into the

uterus. It is more invasive than IUI, performed under sedation or anesthesia, and

in most countries it is used for women with severe fertility problems, such as tubal

damage or advanced endometriosis. It also has a higher success rate than IUI, of

about 25% per embryo transfer. Because IVF also generates as-good-as-random

fertility variation, I include eventual IVF attempts in the analysis. To account for

differences in success rates between IUI and IVF and selection into procedures, all

terms in each propensity score are interacted with a procedure-type indicator.

In the Netherlands, couples without a specific infertility diagnosis are typically

required to undergo six IUI cycles before becoming eligible for IVF. Compulsory

health insurance covers an unlimited number of IUI cycles and up to three IVF

procedures. In 2022, each additional IVF cycle cost approximately 4,000 euros,

but because multiple embryos can be frozen per cycle, subsequent transfers could

cost 1,000 euros or less.

4.3 Data and Sample Characteristics

I use administrative data from Statistics Netherlands, covering all residents.

Medical records from 2012–2017 are drawn from the Diagnosis-Treatment Combi-

nation system, which Dutch hospitals are required to maintain. The main variables

are the procedure type—IUI or IVF—and the date of sperm or embryo insertion,

which marks the key moment for my analysis. From this point onward, outcomes

can no longer be directly influenced by doctors or patients, introducing potentially

as-good-as-random variation in fertility outcomes. Procedure success is defined as

having a child born within ten months of insertion with no subsequent proce-

dures, a definition validated against medical records by Lundborg et al. (2017).

Adoptions in the Netherlands are extremely rare, with fewer than 40 annually.

Labor market data span 2011–2023 and include annual work hours and gross

earnings derived from tax records. Reported work hours include maternity leave,

and earnings include maternity pay. In Appendix SA1.5, I replicate the main

analyses using adjusted hours that account for the maximum potential duration

of unobserved leave. This adjustment affects estimates only in the first year after

childbirth. I also use several demographic variables, including an indicator for

higher education attainment, number of children, year and month of birth, and

cohabitation status.

My main sample includes 12,734 Dutch-born women who underwent IUI to
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conceive their first child, had no prior procedures, and were cohabiting with a

male Dutch-born partner at the time of the procedure. I refer to these men as the

partners. I address complications related to separation in Section SA1.10. Fol-

lowing Lundborg et al. (2017), I exclude women whose first observed IUI occurred

in the first data year to avoid including women with unobserved prior IUIs, and

those whose first observed IUI occurred in the last data year to avoid misclassifying

failed procedures as successful due to unobserved subsequent procedures.

For comparison with the general population, I use 171,180 women who con-

ceived their first child without prior assisted conception procedures between 2013

and 2016 while cohabiting with a male partner. Conception dates are approxi-

mated as nine months before birth. All analyses use the full samples, with hours

and earnings set to zero for individuals not in paid employment.

Table 1 compares women whose first IUI succeeded to a representative sample

of mothers (column 6). A year before pregnancy, the two groups had similar

education and work hours, and women in the IUI group were only slightly less

likely to be working. However, two differences stand out: women in the IUI group

were on average 2.5 years older and earned about 2,800 euros more annually.

Patterns for their partners are similar.

The age difference is not surprising. As in most countries, Dutch couples

must usually attempt natural conception for at least a year before becoming eli-

gible for medical assistance, and IUI is often not initiated immediately thereafter.

Moreover, the representative sample likely includes women with unplanned births,

which tend to occur at younger ages. While the earnings difference is arguably

small relative to the standard deviation of 18,000, the next section further shows

that it is largely explained by the age difference.

On average, women whose first IUI succeeded have 1.84 children, compared to

1.92 among mothers in the representative sample (not shown). However, they are

more likely to have multiple births (7% vs. 1.3%).

Beyond observables, an important question is whether IUI mothers differ sys-

tematically in unobservables, which could limit the generalizability of the esti-

mates. They may, for instance, have a stronger desire for raising children, leading

to different effects than most women. Since only about 5% of Dutch mothers

undergo IUI before their first child, such selection could be substantial.

Yet fertility problems are largely unpredictable, meaning that IUI mothers

can be seen as drawn from a broader group of women with similar preferences

who would have initiated treatment but conceived naturally earlier. The size

of this group can be assessed by considering medical evidence on fecundity and
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Table 1: First IUI Outcomes and Descriptives

Success Fail Dif. IPW dif. Rep. Suc. vs rep.
(1) (2) (1)-(2) (1)-(2) cond. (5) (1)-(5)

Work (W) 0.912 0.916 -0.004 -0.009 0.936 -0.024
[0.283] [0.277] (0.008) (0.008) [0.244] (0.007)

Work (P) 0.894 0.885 0.009 0.002 0.897 -0.002
[0.307] [0.319] (0.009) (0.009) [0.304] (0.008)

Hours (W) 1300.012 1298.876 1.136 -1.951 1310.923 -10.911
[547.832] [558.316] (15.730) (16.119) [544.468] (14.554)

Hours (P) 1513.337 1494.541 18.796 3.345 1497.603 15.734
[635.121] [656.050] (18.457) (19.041) [651.043] (17.403)

Earn. 1000s EUR (W) 29.358 29.648 -0.290 0.203 26.555 2.803
[18.000] [18.911] (0.531) (0.561) [15.989] (0.427)

Earn. 1000s EUR (P) 38.082 38.060 0.022 0.322 33.862 4.220
[25.425] [26.525] (0.745) (0.774) [24.148] (0.646)

Bachelor deg. (W) 0.512 0.494 0.018 0.518 -0.007
[0.500] [0.500] (0.014) [0.500] (0.013)

Bachelor deg. (P) 0.425 0.410 0.014 0.430 -0.005
[0.494] [0.492] (0.014) [0.495] (0.013)

Age (W) 31.373 32.060 -0.687 28.840 2.533
[3.889] [4.265] (0.119) [3.896] (0.104)

Age (P) 34.088 34.856 -0.768 31.415 2.673
[4.968] [5.500] (0.154) [4.803] (0.128)

Observations 1,411 11,323 171,180

Joint p-val. 0.001 0.955 0.000

Note: Success – average among women whose first IUI succeeded; Fail – average among women
whose first IUI failed; Dif. – difference between Success and Fail ; IPW dif. – difference adjusted for
age and education using inverse probability weights from the baseline specification; Rep. – average in
representative sample of women who conceived their first child without assisted conception procedures;
Suc. vs rep – difference between Success and Rep.. Reference year: year of first IUI (IUI sample);
9 months before first birth (representative sample). IUI sample: women who underwent intrauterine
insemination for their first child between 2013 and 2016, with no prior assisted conception procedures,
cohabiting with a male partner in the year prior to the reference year. Representative sample: women
with no assisted conception procedures before first birth, cohabiting with a male partner in the year
prior to the reference year, with reference year between 2013 and 2016. Labor market outcomes
measured in the year before the reference year; age measured in the reference year. Bachelor deg. –
indicator for completing a bachelor’s degree. Earn. – earnings, (W) – woman, (P) – partner. Standard
deviations in brackets. Standard errors in parentheses.

the institutional context. IUI is typically initiated after 1.5 years of unsuccessful

natural attempts, meaning that with a mean initiation age of 32, most women

had been trying since about age 30.5. At this age, the probability of conceiving

naturally within 1.5 years is about 90% (Leridon, 2004).

This implies that for each IUI mother, nine similar women conceived naturally

before becoming eligible. Calculations based on full age profiles yield comparable

figures. These results suggest that the 5% who undergo IUI before motherhood

may be comparable in unobservables to at least half of all mothers, making esti-

mates from this group relevant for a broad population of parents.
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4.4 Unconfoundedness, Procedure Profiles, and Career Trajectories

Since women have limited direct control over IUI outcomes (see Section 3.1

for discussion of mental health and lifestyle factors), the main threat to uncon-

foundedness is that success may depend on latent health factors that also influence

labor market outcomes. As such factors could be expected to also affect pre-IUI

outcomes, unconfoundedness can be assessed by comparing pre-IUI characteristics

between women whose procedure succeeded and those whose procedure failed.

Table 1 compares average characteristics of couples whose first IUI succeeded

(column 1) and failed (column 2), measured in the year before the procedure.

Because age strongly predicts IUI success, these comparisons are descriptive and

not intended to test unconfoundedness. Despite this, the groups are similar in

earnings, employment rates, and education. The only notable difference is age:

both women and their partners whose first IUI succeeded were nearly nine months

younger, consistent with age being the key determinant of procedure success.

Table 1 also reports average covariate differences after adjusting for age and

education (following Lundborg et al., 2017) using inverse probability weights from

the main specification (column 3). The remaining gaps are negligible. Excluding

education has no effect (not reported).

Appendix SA4 presents equivalent results for balance in subsequent procedures.

These findings support conditional sequential unconfoundedness. All remaining

analyses account for differences in success rates by age at the time of each proce-

dure, education, and procedure type.

Local sequential unconfoundedness may also fail if women who pursue addi-

tional procedures were more likely to succeed at earlier procedures, and this selec-

tion is correlated with their potential labor market outcomes (see Section 3.1 for

a detailed discussion). To assess this, I examine success rates across procedures.

If women with higher willingness were more likely to succeed at each procedure,

one would expect higher success rates at later procedures, which are undertaken

only by such women.

Because success probabilities decline with age, which may obscure this pattern,

I first estimate age-conditional IUI success rates using the baseline specification.

I then compare these rates while holding age fixed at the average age at the

first procedure. Panel A in Figure 1 shows that success rates are similar across

procedures, suggesting limited correlation between willingness and success.

Panels B–D in Figure 1 further document the distribution of procedure at-

tempts and natural births. Panel B plots complier and relier shares over time,

estimated using the baseline specification. Two years after the first IUI, relier and
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Figure 1: Procedure Descriptives and Pre-trends

Note: Panel A: age-conditional intrauterine insemination (IUI) success rates, holding covariates
at their average values at the first procedure. Panel B: estimated complier and relier shares over
time. Panel C: cumulative distribution of the number of assisted conception procedures pursued
after the first failure and the number women would pursue if the first ten failed, up to six years
after the first IUI. Panel D: relier shares by willingness, six years after the first IUI. Panels E
and F: pre-IUI work hour and earnings trajectories for women whose first IUI succeeded versus
those whose first procedure failed. Sample includes all women who underwent IUI for their first
child between 2013 and 2016 and were cohabiting with a male partner in the year before the first
procedure. All panels use inverse probability weights from the baseline specification. Panels C
and D use the first 11 procedures to illustrate the share of women exceeding 10 procedures; all
other panels use only the first 10 procedures. Time is measured relative to the first procedure.
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complier shares are 0.8 and 0.38, falling to 0.43 and 0.2 by year six. Thus, my

estimates cover a group roughly twice as large as in conventional IV estimates.

The decline in the relier share over time can be directly translated into the

delay in fertility timing caused by IUI failure. This shows that women who become

mothers within the sample period after failed procedures do so, on average, 3.1

years later than if they had conceived at the first IUI. Procedure success therefore

substantially influences parenthood timing.

Panel C shows the cumulative distribution of the number of procedures women

undergo after the first failure and the number they would undergo if the first ten

failed, estimated using the baseline specification. Women undergo on average 4.1

additional procedures, and their average willingness is 6.7. 43% of women whose

first IUI failed eventually undergo IVF (not shown). Panel D plots the relier share

six years after the first IUI by willingness, indicating no correlation.

Panels E and F compare work hour and earnings trajectories before the first

IUI between women whose first IUI succeeds and those whose first IUI fails. The

comparison uses weights from the baseline specification. Work hour profiles are

relatively flat, while earnings profiles are increasing. Differences between the two

groups are small. From three to one year before the first IUI, women’s earnings

increase by 1,700 euros on average, suggesting that the earnings gap relative to

the representative sample is largely explained by age differences.

5 Results

Section 5.1 quantifies the effects of parenthood. Section 5.2 examines the

impacts of parenthood timing. Section 5.3 overviews extensions.

5.1 Effects of Parenthood

Panels A and B in Figure 2 present effects on women’s annual work hours and

earnings. Estimates are reported separately for each year after the first IUI; in this

sample, this corresponds to the age of the first child. In the conception year, the

bounds indicate negligible impacts on either outcome. Between the second and

sixth years of motherhood, the average upper and lower bounds imply reductions

in annual work hours of 110 and 260, respectively. These correspond to declines

of 10% to 22% relative to the point-identified relier average control outcome (see

Appendix SA1.6). For earnings, the average upper and lower bounds indicate

reductions of 3,200 and 9,300 euros, or 10% to 28%. The midpoint of the bounds—

which corresponds to the scenario with limited selection into natural births after

failed IUIs, conditional on observables—suggest anual losses of about 185 hours

and 6,250 euros.

Panels C and D in Figure 2 present effects on men’s outcomes. The bounds
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are similar in width to those for women but are centered near zero. Six years

into parenthood, they rule out reductions in work hours greater than 2% and in

earnings greater than 13%.

Panels E and F in Figure 2 present the share of within-couple gender gap

among parents caused by parenthood—that is, the average effect on the gender

gap relative to the average gap after parenthood.6 Between the second and sixth

years of parenthood, the effects account for 21% to 59% of the gender gap in annual

work hours and up to 49% of the gap in annual earnings. In total, parenthood

causes 32% to 54% of the gap in work hours and 4% to 47% of the gap in earnings

over this period.7 Assuming limited selection into natural births, the midpoints

correspond to 43% for work hours and 25.5% for earnings.

It should be noted that measuring effects by time since birth may imply that

men’s and women’s outcomes are observed at systematically different ages, poten-

tially limiting their relevance for lifetime inequality. Appendix SA1.7 addresses

this concern by measuring outcomes at the same age for both partners; the results

remain very similar to the baseline estimates.

5.2 Effects of Parenthood Timing

Next, I turn to the effects of delayed childbirth (−δ). I focus on outcomes

starting three years after the first IUI, when the share of non-reliers stabilizes at

50% (Figure 1); earlier bounds are wide because this share is too low. At this

point, women who conceived after failed IUIs did so, on average, about three

years later than if they had conceived at the first IUI, and this delay remains

stable through the end of the sample window. The estimates therefore capture

the effect of conceiving later rather than immediately, by three years on average.

Panels A and B in Figure 3 present the effects of delayed childbirth on women’s

annual work hours and earnings. Estimates are reported separately for each year

after the first IUI and capture contemporaneous differences between women who

have already had children but conceived later versus at the first IUI. At a given

time since the first IUI, the estimates reflect the total effect of delayed childbirth,

combining differences in age at childbirth, time since childbirth, and first-child age

of roughly three years (see Section 2.2 for a discussion of interpretation).

The bounds imply annual gains of 10 to 160 hours, with a midpoint of about 85

6Calculated as 1 − a/b, where a is the relier average within-couple gap in the
control outcome and b is the lower or upper bound for the relier average within-
couple gap in the treated outcome. Both are estimated using orthogonal moments.

7Direct per-period bounds may assume different sets of reliers in each period,
which is not possible; aggregating such bounds is overly conservative. See Ap-
pendix SA1.6 for adjusted total effect estimates discussed here.
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Figure 2: Effects of Parenthood

Note: Panels A–D: effects of parenthood on annual work hours and earnings (in EUR), estimated
using the baseline specification. Panels E and F: share of within-couple gender inequality among
parents caused by parenthood, calculated as 1−a/b, where a is the average within-couple gap in
the control outcome and b is the lower or upper bound for the average within-couple gap in treated
outcome, both estimated using orthogonal moments from the baseline specification. Confidence
intervals are based on the Delta method. Time relative to first intrauterine insemination. Sample
includes all women who underwent intrauterine insemination for their first child between 2013
and 2016 and were cohabiting with a male partner in the year before the first procedure, as well
as these partners.
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Figure 3: Effects of Delayed Parenthood on Women’s Outcomes

Note: Panels A and B: effects of delayed childbearing on annual work hours and earnings (in
EUR). Panels C and D: effects of conceiving later on cumulative work hours and earnings (in
EUR). All estimates use the baseline specification. Time relative to first intrauterine insemina-
tion. Sample includes all women who underwent intrauterine insemination for their first child
between 2013 and 2016 and were cohabiting with a male partner in the year before the first
procedure.

hours, suggesting that later childbearing increases annual work hours by roughly

9% relative to earlier childbearing. Although the lower limit of the 95% confidence

interval for the lower bound lies near zero, this corresponds to most extreme

selection into natural conception. Under even minimal randomness in natural

conception, the estimates therefore imply that the true effect is positive. For

earnings, the bounds range from a loss of 2,000 euros to a gain of 4,400 euros,

with a midpoint of about 1,200 euros, making the evidence less conclusive.

To shed further light on these effects, I assess cumulative impacts since the first

IUI. This serves two purposes. First, it additionally captures the effects of delaying

childbirth that arise before later childbearing occurs, which mirror the effects of

parenthood. Second, by exploiting within-woman correlations in outcomes over
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time, it allows for more informative inference on contemporaneous effects after

delayed childbirth.8 I estimate these impacts using total work hours or earnings

summed from the first IUI up to the current year.

To clarify interpretation, suppose all natural conceptions after IUI failure oc-

cur three years after the first procedure. The year-three estimates then capture

the total effect of remaining childless up to that point, which mirrors the effect of

parenthood relative to childlessness. The key to assessing timing effects is the evo-

lution thereafter. If contemporaneous timing effects are limited, meaning delayed

mothers have outcomes similar to earlier mothers once both groups have children,

cumulative impacts will stabilize. If women who become mothers later continue

to have better outcomes even after childbirth, cumulative impacts will continue

to grow. Panels C and D present the corresponding estimates. Because the cu-

mulative bounds rise steadily, the results suggest persistent benefits of delaying

parenthood for both work hours and earnings.

It is worth emphasizing that the timing effects studied here concern contempo-

raneous losses: after later childbirth, women experience smaller reductions than

they would have if they had conceived earlier. Notably, this occurs even though

they have become mothers more recently and impacts are often thought to be

largest at the onset of motherhood (see Lundborg et al., 2017, for discussion).

It also occurs even though these delays are unintended, arising from IUI failure,

which should lead to larger losses if fertility is timed to minimize career costs (see

Bensnes et al., 2025, for discussion).

Overall, the evidence points to early childbearing as an important driver of

career setbacks. It suggests that postponement helps mitigate the losses not only

by eliminating them before the later birth but also by reducing them afterward.

I present indicative calculations of how much postponement may offset the career

cost of motherhood in Section 6.

5.3 Extensions

I present a range of extensions and sensitivity analyses in Appendix SA1. Here,

I briefly overview several analyses not discussed in detail earlier in the paper.

Appendix SA1.8 reports heterogeneity analyses by women’s pre-IUI age, work

hours, and earnings; the bounds do not reject homogeneous effects.

In Appendix SA1.9, I use my estimates of parenthood effects to assess selection

into fertility timing. Exploiting variation in IUI success, I construct counterfactual

8Direct per-period bounds may implicitly rely on different sets of relier women
in each period, which is not possible; aggregating such bounds is therefore overly
conservative.
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career profiles for relier women in the event that they remain childless. Using

the timing of IUI attempts as a proxy for fertility timing, I compare the career

trajectories of individuals who attempt conception at younger versus later ages. I

find that substantial differences emerge between these groups even in the absence

of children: earlier mothers work fewer hours and earn less than later mothers,

while earlier fathers earn more than later fathers. These differences account for a

share of gender inequality comparable to the causal effect of parenthood itself.

In Appendix SA1.10, I examine whether mental health deterioration or rela-

tionship breakdowns following unsuccessful conception attempts shape the esti-

mated effects. While I argue that such mechanisms would lead to understated

benefits of later parenthood timing relative to planned delays, they could still

limit the extent to which the estimated effects of parenthood generalize to planned

childlessness. I adapt the main approach to bound effects for women who, in the

event of IUI failure, remain partnered and do not initiate antidepressant use. The

resulting estimates are similar to the baseline, suggesting that the results are not

driven by women who experience such issues.

To provide additional evidence, Appendix SA1.11 estimates the direct effect of

IUI failure on antidepressant use. These estimates are precise and indistinguish-

able from zero. Thus, while these mechanisms cannot be entirely ruled out, the

evidence suggests that their most severe manifestations are unlikely to drive the

results.

6 Discussion

In this section, I discuss how my estimates may generalize to scenarios in

which women make different fertility and career plans, and I present suggestive

calculations on how much delaying motherhood may mitigate its career costs.

The focal point of my analysis is the moment of the first IUI procedure, whose

timing is chosen by the woman. My estimates for the effect of parenthood there-

fore reflect the consequences of failing to conceive when intended, while my es-

timates for the effect of timing reflect the consequences of conceiving later than

intended. To understand the broader role of parenthood in the labor market, two

other counterfactuals are especially important: planned childlessness and deliber-

ate postponement of childbearing.

How my estimates differ from the effects of parenthood relative to planned

childlessness depends on women’s career investment under that counterfactual. If

women invest more when planning to remain childless, expecting higher returns,

my estimates provide a lower bound on the career cost of motherhood. If instead

women invest more in anticipation of motherhood, to accumulate resources or

36



build family-compatible careers, my estimates provide an upper bound.

The impacts of planned delayed childbearing are arguably easier to anticipate.

One reason why planned and unplanned delays may differ concerns the experience

of infertility itself: women’s outcomes may be depressed by the failure to achieve

pregnancy. Another reason is that women may plan fertility and their careers,

at least in part, to minimize career costs. Both imply that planned delays would

result in better labor market outcomes than unplanned delays. This suggests that

the results may be seen as a lower bound on the gains from postponement.

The final question I consider is the extent to which delayed childbearing can

mitigate the career cost of motherhood. This analysis is necessarily suggestive, as

my estimates for the effects of parenthood and its timing cover distinct groups and

capture only short-run impacts. I focus on the midpoints of the bounds. Before

the delayed birth, the estimates imply stable gains from the absence of children

of about 16% in annual hours and 19% in earnings. After the delayed birth, these

gains converge to 5% in annual hours and 2% in earnings.9 Taking 33 years as

the horizon from conception at the first IUI (mean age 32) to retirement, these

figures imply that a one-year delay would raise women’s hours and earnings from

the age of 32 onward by roughly 5.5% and 2.5%, respectively. A five-year delay

would raise hours by 7% and earnings by 4.5%. Since the estimates of the effect of

parenthood converge to annual losses of 15% in hours and 20% in earnings, these

calculations suggest that a five-year delay would reduce average annual losses to

about 9% for hours and 16% for earnings.10

7 Conclusion

This paper develops a new methodology to estimate treatment and treatment-

timing effects in quasi-experiments where individuals not initially assigned to

treatment may obtain it later through repeated assignments. I use this method to-

gether with Dutch administrative data to assess the career impacts of parenthood.

I find that motherhood persistently reduces women’s work hours and earnings,

whereas fatherhood has little effect. Taken together, parenthood causes up to half

of the gender inequality among parents. Finally, my results show that women’s

losses are substantially mitigated when childbearing occurs later in their careers.

9Gains before delayed childbearing are computed by comparing parenthood-
effect estimates for reliers in Figure 2 to their average treated outcomes. Gains
after delayed childbearing compare delayed-childbearing effect estimates for non-
reliers in Figure 3 to their average treated outcomes.

10This is computed by adding delayed-childbearing effect estimates for non-
reliers in Figure 3 to parenthood-effect estimates for reliers in Figure 2, and com-
paring the sum to the average relier control outcome.
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My results suggest that there is considerable scope for policies that reduce the

direct effects of parenthood, such as ensuring that work and family can be more

easily combined, as well as for policies that support delayed childbearing, for ex-

ample through broader access to reproductive technologies or contraceptives. Yet

such interventions may be insufficient to eliminate gender inequality, as substantial

gaps persist even in the absence of children. My findings point to the importance

of better understanding how anticipatory behavior before childbearing influence

women’s careers, and which policies may help mitigate these effects.

Appendix

A1 Proofs

To simplify exposition, let X∗
j ∈ X ∗

j contain Xj and 1A≥j, and define X ∗1
j =

{x ∈ X ∗
j : 1A≥j = 1}. Further, define e∗j(x) = Pr(Zj = 1|X∗

j ) and Z∗
l = (1 −

Zl)/(1−e∗(X∗
l )). Note that e

∗
j(x) = 0 and Zj = 0 if 1A≥j = 0. Hence, Assumption

4 implies E[Z∗
l |X∗

l ] = 1. Moreover, by definition, ΠA
j

(1−Zj)

(1−ej(Xj))
= Πw

j Z
∗
j .

Corollary. Under Assumption 3:

(Y1(1), Y0(0), R
+, R,W,Z1, . . . , Zj−1, X

∗
1 , . . . , X

∗
j−1) |= Z∗

j |X∗
j for all j > 1. (15)

Proof of Corollary. X∗
j includes 1{A≥j}, and when A < j, we have Zj = 0, which

covers the cases when X∗
j ∈ X ∗

j \ X ∗1
j . The remainder follows from Assumption 3,

since 1{A≥j}, Z1, . . . , Zj−1, X
∗
1 , . . . , X

∗
j−1, and e

∗
j(X

∗
j ) are fixed given X∗

j .

Lemma. For any l s.t. 1 ≤ l ≤ w and any measurable function g(Ml), where

Ml = (Y1(1), Y0(0), R
+, R,W,Z1, . . . , Zl, X

∗
1 , . . . , X

∗
l ), under Assumptions 3 and

4: E
[
g(Ml)Π

w
j=l+1Z

∗
j

∣∣X∗
l

]
= E [g(Ml)|X∗

l ].

Proof of Lemma. For any l s.t. l < w:

E
[
g(Ml)Π

w
j=l+1Z

∗
j

∣∣X∗
l

]
= E

[
E
[
g(Ml)Π

w
j=l+1Z

∗
j

∣∣X∗
w

]∣∣X∗
l

]
(16)

= E
[
g(Ml)Π

w−1
j=l+1Z

∗
j E [Z∗

w|X∗
w]
∣∣∣X∗

l

]
(17)

= E
[
g(Ml)Π

w−1
j=l+1Z

∗
j

∣∣∣X∗
l

]
(18)

= E [g(Ml)|X∗
l ] , (19)

where (16) holds by law of iterated expectations and because X∗
j includes X∗

l

for j ≥ l, (17) holds by the Corollary, (18) holds because E[Z∗
l |X∗

l ] = 1 under

Assumption 4, and where (19) follows from steps similar to (16) through (18) for

X∗
j for j s.t. l < j < w.

Proof of Theorem 1. I demonstrate the result for the upper bound, the

result for the lower bound is symmetric. First, I demonstrate that
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E
[
Y (1−D+)Πw

j=1Z
∗
j

]
/E[r(X∗

1 )] = E[Y0(0)|R = 1]. Note that:

E
[
Y (1−D+)Πw

j=1Z
∗
j

]
= E[Y0(0)RΠw

j=1Z
∗
j ] (20)

= E
[
E
[
Y0(0)RΠ

w
j=1Z

∗
j

∣∣X∗
1

]]
(21)

= E [E [Y0(0)RZ
∗
1 |X∗

1 ]] (22)

= E [E [Y0(0)R|X∗
1 ]E [Z∗

1 |X∗
1 ]] (23)

= E [Y0(0)R] (24)

= E [Y0(0)|R = 1]Pr(R = 1), (25)

where (20) follows from the definitions, (21) holds by law of iterated expecta-

tions, (22) holds by Lemma, (23) holds by Assumption 3, and (24) holds because

E[Z∗
l |X∗

l ] = 1 under Assumption 4. Next, note that:

E [r(X1)|X1] = E
[
RΠw

j=1Z
∗
j

∣∣X∗
1

]
(26)

= E [RZ∗
1 |X∗

1 ] (27)

= Pr(R = 1|X∗
1 ), (28)

where (26) follows from definitions, (27) holds by Lemma, and where (28) is ob-

tained using that E[Z∗
l |X∗

l ] = 1 under Assumption 4 and applying Assumption 3.

Since E[Pr(R = 1|X∗
1 = x)] = Pr(R = 1), the result holds.

It remains to show that E[Y (1 − D+)1{Y >q(1−p(X∗
1 ),X

∗
1 )}Z1/e

∗
1(X

∗
1 )]/E[r(X∗

1 )]

is a sharp upper bound for E[Y1(1)|R = 1]. I first demonstrate that p(x) =

Pr(R = 1|D+ = 0, Z1 = 1, X∗
1 = x). Assumption 3 together with D+ = 1 −

R+|Z1 = 1 implies that r+(x) = Pr(R+ = 1|X∗
1 = x). Under Assumption 2,

Pr(R = 1|X∗
1 = x) = Pr(R = 1, R+ = 1|X∗

1 = x). Applying the definition of

conditional probability gives p(x) = Pr(R = 1|R+ = 1, X∗
1 = x). Assumption 3

together with D+ = 1 − R+|Z1 = 1 gives Pr(R = 1|D+ = 0, Z1 = 1, X∗
1 = x) =

Pr(R = 1|R+ = 1, X∗
1 = x), which implies the result.

The remainder of the proof is similar to Lee (2009). Let γx = E[Y |Z1 =

1, D+ = 0, Y ≥ q(1−p(x), x), X∗
1 = x]. I next demonstrate that γx is a sharp upper

bound for E[Y1(1)|X∗
1 = x,R = 1]. Using that p(x) = Pr(R = 1|D+ = 0, Z1 =

1, X∗
1 = x), Corollary 4.1 in Horowitz & Manski (1995) gives γx ≥ E[Y |Z1 =

1, D+ = 0, R = 1, X∗
1 = x]. Using that D+ = 0|R = 1 and Y = Y1(1)|Z1 = 1 and

by Assumption 3, E[Y |Z1 = 1, D+ = 0, R = 1, X∗
1 = x] = E[Y1(1)|X∗

1 = x,R = 1],

meaning that γx is an upper bound for E[Y1(1)|X∗
1 = x,R = 1]. Since p(x) is

identified and Y1(1) is observed only among those initially assigned treatment,

Corollary 4.1 in Horowitz & Manski (1995) implies sharpness.

Let fx|R=1(x) be the p.d.f. of X∗
1 conditional on R = 1. Applying Bayes rule

for densities to Pr(R = 1|X∗
1 = x) identified by r(x) and p.d.f. of X∗

1 identified
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directly identifies fx|R=1(x), making
∫
X ∗

1
γxfx|R=1(x)dx the sharp upper bound for

E[Y1(1)|R = 1].

The last step is to show that:∫
X ∗

1

γxfx|R=1(x)dx = E[Y (1−D+)1{Y >q(1−p(X∗
1 ),X

∗
1 )}Z1/e

∗
1(X

∗
1 )]/E[r(X∗

1 )]. (29)

Using the law of iterated expectations and the definition of conditional probabil-

ity:

E[Y (1−D+)1{Y >q(1−p(X∗
1 ),X

∗
1 )}Z1/e

∗
1(X

∗
1 )] (30)

= E[E[γX∗
1
|X∗

1 ] Pr(D
+ = 0, Z1 = 1, Y > q(1− p(X∗

1 ), X
∗
1 )|X∗

1 )/e
∗
1(X

∗
1 )]. (31)

Applying the definition of conditional probability twice and the definition of

p(X∗
1 ):

Pr(D+ = 0, Z1 = 1, Y > q(1− p(X∗
1 ), X

∗
1 )) = r(X∗

1 )e
∗
1(X

∗
1 ) (32)

Thus:

E[Y (1−D+)1{Y >q(1−p(X∗
1 ),X

∗
1 )}Z1/e

∗
1(X

∗
1 )] = E[γX∗

1
r(X∗

1 )]. (33)

Applying Bayes rule for densities: E[γX∗
1
r(X∗

1 )] =
∫
X ∗

1
γxfx|R=1(x)dxPr(R = 1).

Since E[r(X∗
1 )] = Pr(R = 1), the statement holds.

Proof of Theorem 2. Following analogous reasoning as in the first step of Theorem

1 yields:

E[Y (Z1/e1(X1)−Πw
j=1Z

∗
j )] = τATR Pr(R = 1) + δANR Pr(R = 0). (34)

Similarly, as in Theorem 1, E[r(X1)] = Pr(R = 1). Since δ = 0 implies δANR = 0,

the statement holds.

Proof of Theorem 3. I demonstrate the result for the upper bound, the result

for the lower bound is symmetric. Following reasoning analogous to Theorem

2, yields:

E[Y (Z1/e1(X1)−Πw
j=1Z

∗
j )] = τATR Pr(R = 1) + δANR Pr(R = 0), (35)

E[r(X1)] = Pr(R = 1), and E[1 − r(X1)] = Pr(R = 0) . Theorem 1 further

implies that E[mU(G, η0)] is a sharp upper bound on τATR Pr(R = 1). Together,

these results imply that E[mS(G, η0) − mU(G, η0)] is a sharp lower bound on

δANR Pr(R = 0). Thus, the statement holds.

A2 Estimation

The moment functions given in Table A1 identify the same parameters as the

baseline moments:

E[ψL+(G, ξ0)] = E[mL(G, η0)], E[ψU+(G, ξ0)] = E[mU (G, η0)], E[ψS(G, ξ0)] = E[mS(G, η0)].

(36)
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Table A1: Orthogonal Moments

Moment functions

ψL+(G, ξ0) Y (1−D+)1{Y <q(p(X∗
1 ),X

∗
1 )}

Z1

e∗1(X
∗
1 )

− Y (1−D+)Πw
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

+q(p(X∗
1 ), X

∗
1 )
[
Πw

j=1
(1−Zj)

(1−e∗j (X
∗
j ))

(1−D+ − r1(X
∗
1 ))

− Z1

e∗1(X
∗
1 )
p(X∗

1 )(1−D+ − r+(X∗
1 ))− Z1

e∗1(X
∗
1 )
(1−D+)(1{Y <q(p(X∗

1 ),X
∗
1 )} − p(X∗

1 ))
]

−Z1−e∗1(X
∗
1 )

e∗1(X
∗
1 )

zL+(1, X∗
1 )r1(X

∗
1 ) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

e∗k(X
∗
k)−Zk

1−e∗k(X
∗
k)

[rk(X
∗
k)βk(X

∗
k)

+q(p(X∗
1 ), X

∗
1 )(r1(X

∗
1 )− rk(X

∗
k))]

ψU+(G, ξ0) Y (1−D+)1{Y >q(1−p(X∗
1 ),X

∗
1 )}

Z1

e∗1(X
∗
1 )

− Y (1−D+)Πw
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

+q(1− p(X∗
1 ), X

∗
1 )
[
Πw

j=1
(1−Zj)

(1−e∗j (X
∗
j ))

(1−D+ − r1(X
∗
1 ))

− Z1

e∗1(X
∗
1 )
p(X∗

1 )(1−D+ − r+(X∗
1 ))− Z1

e∗1(X
∗
1 )
(1−D+)(1{Y >q(1−p(X∗

1 ),X
∗
1 )} − p(X∗

1 ))
]

−Z1−e∗1(X
∗
1 )

e∗1(X
∗
1 )

zU+(1, X∗
1 )r1(X

∗
1 ) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

e∗k(X
∗
k)−Zk

1−e∗k(X
∗
k)

[rk(X
∗
k)βk(X

∗
k)

+q(1− p(X∗
1 ), X

∗
1 )(r1(X

∗
1 )− rk(X

∗
k))]

ψ−(G, ξ0) Y (1−D+) Z1

e∗1(X
∗
1 )
p(X∗

1 )− Y (1−D+)Πw
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

−β+(X∗
1 )
[

Z1

e∗1(X
∗
1 )

(1−D+−r+(X∗
1 ))

r+(X∗
1 )

r1(X
∗
1 )−Πw

j=1
(1−Zj)

(1−e∗j (X
∗
j ))

(1−D+ − r1(X
∗
1 ))

]
−Z1−e∗1(X

∗
1 )

e∗1(X
∗
1 )

β+(X∗
1 )r1(X

∗
1 ) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

e∗k(X
∗
k)−Zk

1−e∗k(X
∗
k)

[
rk(X

∗
k)βk(X

∗
k)

+β+(X∗
1 )(r1(X

∗
1 )− rk(X

∗
k))

]
ψS(G, ξ0) Y Z1

e∗1(X
∗
1 )

− YΠw
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

−γ1(X∗
1 )

Z1−e∗1(X
∗
1 )

e∗1(X
∗
1 )

+
∑w

k=1 γ
0
k(X

∗
k)1{A≥k}Π

k−1
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

e∗k(X
∗
k)−Zk

1−e∗k(X
∗
k)

ψR(G, ξ0) r1(X
∗
1 ) + (1−D+ − r1(X

∗
1 ))Π

w
j=1

(1−Zj)
(1−e∗j (X

∗
j ))

+Σw
k=11{A≥k}Π

k−1
j=1

(1−Zj)
1−e∗j (X

∗
j )

(e∗k(X
∗
k)−Zk)

1−e∗k(X
∗
k)

[r1(X
∗
1 )− rk(X

∗
k)]

Nuisance functions

ξ0(x∗1, . . . , x
∗
w) {e∗1(x∗1), . . . , e∗w(x∗w), r1(x∗1), . . . , rw(x∗w), r+(x∗1), q(p(x∗1), x∗1), q(1− p(x∗1), x

∗
1),

β1(x
∗
1), . . . , βw(x

∗
w), β

+(x∗1), z
U+(x∗1), z

L+(x∗1), γ
0
1(x

∗
1), . . . , γ

0
w(x

∗
w), γ

1(x∗1)}
rk(x) E[(1−D+)/(ΠA

j=k+1(1− e∗j (X
∗
j ))) | X∗

k = x,ZA = 0]

E[ΠA
j=k+1(1− e∗j (X

∗
j )) | X∗

k = x,ZA = 0]

βk(x) E[Y/(ΠA
j=k+1(1− e∗j (X

∗
j ))) | X∗

k = x,D = 0]

E[ΠA
j=k+1(1− e∗j (X

∗
j )) | X∗

k = x,D = 0]

β+(x) E[Y | X∗
1 = x,Z1 = 1, D+ = 0]

zU+(x) E[Y | X∗
1 = x,Z1 = 1, D+ = 0, Y ≥ q(1− p(x), x)]

zL+(x) E[Y | X∗
1 = x,Z1 = 1, D+ = 0, Y ≤ q(p(x), x)]

γ0k(x) E[Y/(ΠA
j=k+1(1− e∗j (X

∗
j ))) | X∗

k = x]

E[ΠA
j=k+1(1− e∗j (X

∗
j )) | X∗

k = x]

γ1(x) E[Y | X∗
1 = x,Z1 = 1]

However, the original moments are sensitive to small errors in the nuisance pa-

rameter, whereas the new moments are not. For example, for some j, let ê∗j(x
∗
j)

be an estimate of the propensity score e∗j(x
∗
j) such that ê∗j(x

∗
j) ̸= e∗j(x

∗
j) for

x∗j ∈ X ∗1
j (see Appendix A1 for the definitions of e∗j(x

∗
j) and X∗

j ). Define

r ∈ [0, 1) → ψU+(G, r) = ψU+(G, ξr), where:

ξr = {e∗1(x∗1), . . . , e∗l (x∗l , r), . . . , e∗w(x∗w), r1(x∗1), . . . , rw(x∗w), r+(x∗1), q(p(x∗1), x∗1), (37)

q(1− p(x∗1), x
∗
1), β1(x

∗
1), . . . , βw(x

∗
w), β

+(x∗1), z
U+(x∗1), z

L+(x∗1), γ
0
1(x

∗
1), . . . , γ

0
w(x

∗
w), γ

1(x∗1)},
(38)
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and where e∗l (x
∗
l , r) = e∗l (x

∗
l )+ r(ê

∗
l (x

∗
l )− e∗l (x

∗
l )), meaning that e∗l (x

∗
l , 0) = e∗l (x

∗
l ).

Then, for the new moment, ∂r E[ψU+(G, ξr) | X∗
l ]
∣∣
r=0

= 0 almost surely, while

for the original moment, ∂r E[mU(G, ηr) | X∗
l ]
∣∣
r=0

̸= 0 almost surely. I use this

property together with sample splitting to justify asymptotic inference as if the

nuisance parameter were known, appealing to the argument in Semenova (2025).

A proof of orthogonality involves repeated application of the corollary and substi-

tution of the nuisance function definitions to show that E[ψU+(G, ξr) | X∗
l ] does

not depend on e∗j(X
∗
j ).

The estimator for θb, for b ∈ {L,U}, is given by:

θ̂b =
(
Σi

(
ψb+(Gi, ξ̂i)1{p(X∗

1 )≤1} + ψ−(Gi, ξ̂i)1{p(X∗
1 )>1}

))
/
(
Σiψ

R(Gi, ξ̂i)
)

(39)

where Gi is the data for observation i, and ξ̂i is the nuisance parameter for ob-

servation i, estimated on a subsample that excludes observation i. ψb+ is the

orthogonal counterpart of mb, and ψR is the orthogonal counterpart of r. ψ−

covers the case where the estimated relier share exceeds the subsequent relier

share, which may occur in estimation when the true shares are close. ψ− is con-

structed such that under the assumptions in Theorem 1 E[ψ−(G, ξ)]/E[r(X1)] =

E[E[Y1(1) | R+ = 1, X∗
1 ] | R = 1] − E[Y0(0) | R = 1]. I discuss monotonicity

further in Appendix SA1.3. The moment for the sequential IV numerator is ψS,

and the estimator for γb, for b ∈ {L,U} follow Theorem 3.

I estimate zU+
t and zL+t by trimming the sample above or below estimated

quantiles and estimating conditional expectations. While theoretical results for

nonparametric estimation of truncated expectations exist (Olma, 2021), no imple-

mentation is currently available. Outcomes are made continuous by adding small

noise u ∼ U(0, 0.001) to avoid ties.
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Agüero, J. M., & Marks, M. S. (2008). Motherhood and female labor force

participation: evidence from infertility shocks. American Economic Review ,

98 (2), 500–504.

Angelov, N., Johansson, P., & Lindahl, E. (2016). Parenthood and the gender

gap in pay. Journal of Labor Economics , 34 (3), 545–579.

Angrist, J., Ferman, B., Gao, C., Hull, P., Tecchio, O. L., & Yeh, R. W. (2024).

42



Instrumental variables with time-varying exposure: New estimates of revascu-

larization effects on quality of life. National Bureau of Economic Research.

Angrist, J., & Imbens, G. (1995). Identification and estimation of local average

treatment effects. National Bureau of Economic Research.

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. arXiv

preprint arXiv:1610.01271 .

Bensnes, S., Huitfeldt, I., & Leuven, E. (2025). Reconciling estimates of the

long-term earnings effect of fertility. Unpublished working paper .

Bertrand, M. (2020). Gender in the twenty-first century. AEA Papers and Pro-

ceedings , 110 , 1–24.
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Supplementary Appendix for “Parenthood

Timing and Gender Inequality”

SA1 Robustness and Extensions

Appendix SA1.1 compares my estimates with conventional methods. Ap-

pendix SA1.2 presents an extension to bound the effects over time for a stable

group. Appendix SA1.3 tests the monotonicity assumption, while Appendix SA1.4

reports the main estimates allowing the direction of monotonicity to vary with

covariates. Appendix SA1.5 presents estimates of work hours adjusted for po-

tential parental leave. Appendix SA1.6 reports cumulative impacts and effect

sizes relative to remaining childless. Appendix SA1.7 addresses age differences

between partners. Appendix SA1.8 examines heterogeneity by pre-IUI covariates.

Appendix SA1.9 quantifies selection into parenthood timing. Appendix SA1.10

assess the role of mental health and relationship breakdowns. Appendix SA1.11

presents estimates of the impact on antidepressant uptake.

SA1.1 Comparison with Conventional Methods

I first compare my bounds with those based solely on the first IUI, without

using monotonicity, which are equivalent to the approaches in Zhang & Rubin

(2003) and Lee (2009) (ZRL). Figure SA1 shows that, in every year following

childbirth, ZRL bounds are 4.3 to 8.4 times wider and do not rule out either large

positive or large negative effects on women’s outcomes. Even when monotonicity is

leveraged, these bounds remain 3.8 to 5.8 times wider than mine. Thus, exploiting

sequential quasi-experimental assignment yields substantially more informative

estimates. Notably, this improvement is not a data artifact but a theoretical

guarantee.11

Next, I compare my estimates to those based on the IV and recursive IV ap-

proaches. Implementation details are provided in Appendix SA3. Figure SA2

presents the estimates for women’s outcomes. In most years, conventional IV esti-

mates are either consistent with the largest negative effects implied by the bounds

or are more negative. The lower bounds are attainable under strong negative se-

lection of reliers with respect to treated labor market outcomes. One reason for

this difference could be that the IV covers compliers whereas the bounds cover

11ZRL bounds are wider because, with only the first IUI, the average control
outcome can be identified for compliers but not for the broader group of reliers.
The smaller the group, the more extreme the bounds for their average treated
outcomes (if everyone is a complier, no trimming is needed and the effect bounds
collapse to the average treatment effect).
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Figure SA1: Comparison with ZRL Bounds for Effects on Women’s Outcomes

Note: Effects of motherhood on women’s annual work hours and earnings (in EUR). Bounds
– baseline specification; ZRL bounds – baseline specification using only the first IUI and no
information on subsequent births; ZRL bounds with monotonicity – baseline specification using
only the first IUI. Time relative to the first intrauterine insemination. Sample includes all women
who underwent intrauterine insemination for their first child between 2013 and 2016 and were
cohabiting with a male partner in the year before the first procedure.
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Figure SA2: Comparison of Different Methods for Effects on Women’s Outcomes

Note: Effects of motherhood on women’s annual work hours and earnings (in EUR), based on
different estimation methods. Bounds estimated using the baseline specification. IV – instru-
mental variable; Rec. IV – recursive instrumental variable; Seq. IV – sequential instrumental
variable; Seq. Rec. IV – sequential recursive instrumental variable. See Appendix SA3 for
implementation details. Time relative to the first intrauterine insemination. Sample includes all
women who underwent intrauterine insemination for their first child between 2013 and 2016 and
were cohabiting with a male partner in the year before the first procedure.
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reliers. To explore this further, I estimate effects on reliers using the sequential IV

approach described in Section 3.3.4. The results are similar to the conventional IV

estimates. Since both the bounds and the sequential IV approach estimate effects

for reliers, the comparison indicates that the timing of treatment may play an

important role. Moreover, because the non-reliers who drive this gap are a subset

of always-takers (see Section 3.3.4), this implication extends to conventional IV

estimates as well.

Figure SA2 also presents recursive IV estimates for women’s outcomes. In

contrast to the conventional IV estimates, these estimates are consistent with

the smallest negative effects implied by the bounds, which are attainable under

strong positive selection of reliers with respect to treated labor market outcomes.

Figure SA2 additionally shows recursive estimates constructed using sequential

IV (see Appendix SA3 for details). These estimates differ from the conventional

recursive IV results, lying near the lower bound for hours and closer to the center of

the bounds for earnings. Because these estimates would be expected to coincide if

timing effects were absent, their divergence indicates that timing effects may play

an important role.

This comparison illustrates how the proposed method complements existing

approaches. Even without restrictions on how effects vary with treatment timing,

duration, or life-cycle stage, the bounds establish a relatively narrow range for the

impacts. This shows that informative conclusions can be drawn without imposing

strong assumptions about treatment effect heterogeneity.

SA1.2 Stable Relier Group and Anticipation

The evolution of my main estimates over time reflects two factors. First, how

the effect of parenthood changes with time spent in parenthood. Second, how ef-

fects differ between women who remain reliers for different durations, as the relier

group shrinks over time. To address this, I adapt my approach to bound effects

for women who remain reliers through the final period. This is feasible because

fertility is irreversible. Specifically, this implies two things. First, at each point

in time, the average past control outcomes for reliers can be identified using the

outcomes of women who are still childless at that time. Second, their average

treated outcomes at each moment since the first IUI can be bounded by assuming

that the remaining reliers were either at the top or bottom of the earlier treated

outcome distribution. In practice, this amounts to estimating the baseline speci-

fication using fertility outcomes from the final period and labor market outcomes

from previous periods. Because control outcomes are identified solely using women

who remain childless, this also addresses concerns about baseline or conventional
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Figure SA3: Effects for Women who Remain Childless

Note: Effects of motherhood on women’s annual work hours and earnings (in EUR), estimated
using the baseline specification. Time relative to the first intrauterine insemination; fertility
outcomes measured at the end of the sample period. Sample includes all women who underwent
intrauterine insemination for their first child between 2013 and 2016 and were cohabiting with
a male partner in the year before the first procedure.

estimates being biased by the fact that women in the control group may anticipate

future parenthood. Figure SA3 presents estimates for women who remain reliers

six years after their first IUI, which are comparable to the baseline results.

SA1.3 Testing Monotonicity

Monotonicity states that all reliers are subsequent reliers, implying that the

subsequent relier share is at least as large as the relier share: Pr(R+ = 1) ≥
Pr(R = 1). Figure SA4 plots the estimated shares over time, showing that the

subsequent relier share consistently exceeds the relier share, in line with mono-

tonicity.

Monotonicity further implies that the relier share is at least as large as the

subsequent relier share at each covariate value: r+(X∗
1 ) ≥ r(X∗

1 ). Since the con-

ditional shares are estimated nonparametrically, formally testing whether their

differences allow rejecting monotonicity is not trivial, but comparing them offers

some insight. Panel A in Figure SA5 plots the empirical distribution of the dif-

ference between estimated conditional subsequent relier and relier shares in year

6. For 31% of observations, the difference is below zero. While this would contra-

dict monotonicity if observed in the true shares, such deviations can result from

estimation error when the shares are close. Namely, when all subsequent reliers

are reliers Pr(R+ = R) = 1, the difference should be below zero for 50% of obser-

vations. Consistent with this, the differences are generally small, with only 7% of
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Figure SA4: Estimated Relier and Subsequent Relier Shares

Note: Relier and subsequent relier shares over time, estimated using the baseline specification.
Time relative to the first intrauterine insemination. Sample includes all women who underwent
intrauterine insemination for their first child between 2013 and 2016 and were cohabiting with
a male partner in the year before the first procedure.
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Figure SA5: Histogram of Difference in Subsequent Relier and Relier Shares

Note: Histogram of the difference in covariate-conditional subsequent relier and relier shares
six years after the first intrauterine insemination. Monotonicity – estimated using the baseline
specification. Partial Monotonicity – estimated treating women who uptake antidepressants
or separate from their partner after failing to conceive as if they had conceived naturally, and
then using the baseline specification. Sample includes all women who underwent intrauterine
insemination for their first child between 2013 and 2016 and were cohabiting with a male partner
in the year before the first procedure.

observations below −0.1, suggesting no clear monotonicity violations.

To formally test monotonicity using covariates, I adapt the approach of Semen-

ova (2025). I partition the sample into J = 25 discrete cells X ∗
1,j based on quintiles

of women’s work hours and age in the year prior to their first IUI. Since these two

covariates are highly predictive of the remaining covariates used in the analy-

sis, including additional ones results in small cells (e.g., almost no women have

extremely high work hours while having extremely low earnings). Monotonicity
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implies that the subsequent relier share is at least as large as the relier share in each

cell, meaning that each value in the vector µ = (E[r+(X∗
1 )−r(X∗

1 ) | X∗
1 ∈ X ∗

1,j])
J
j=1

must be non-negative. The null hypothesis is −µ ≤ 0, and the test statistic is

max∗j∈J
−µ̂j

σ̂j
. The critical value is the self-normalized critical value of Chernozhukov

et al. (2019). σj are estimated using multiplier bootstrap with 100 draws and

weights wi ∼ exp(1) to account for the uncertainty in the estimation of propensity

scores (results remain unchanged when treating scores as fixed). Consistent with

the results in Figure SA5, in 28% of cells, µ̂j in year 6 is negative. However, the

p-value for the test statistic is 0.54, indicating that these differences are not statis-

tically significant, failing to reject monotonicity. Using women’s earnings instead

of hours to partition the sample yields the same conclusion.

The Panel B in Figure SA5 repeats the above when restricting focus to reliers

who would remain cohabiting with their partners and not take up antidepressants

after failing to conceive (and treating those who separate from their partners or

take up antidepressants after procedure failure as if they had children, exclud-

ing them from the population covered by the bounds). The estimated difference

between the subsequent relier and relier shares is below zero for only 11% of obser-

vations and below −0.1 for just 1%, providing stronger support for monotonicity

in this group.

SA1.4 Relaxing Monotonicity

To address violations of monotonicity in the Lee (2009), Semenova (2025)

relaxes the assumption by allowing its direction to vary with X∗
1 . To test the

sensitivity of my results, I adopt a similar approach. If the reversal of the estimated

relier and subsequent relier shares occurs because the true shares are close, this

method and the baseline approach should yield similar results.

Define X ∗
help = {x : r+(x) ≥ r(x)} and X ∗

hurt = X ∗
1 \ X ∗

help. The relaxed

monotonicity assumption is that ∀x ∈ X ∗
help R

+ ≥ R a.s., and ∀x ∈ X ∗
hurt R

+ < R

a.s.. Table SA1 presents orthogonal moments for the case when X∗
1 ∈ X ∗

hurt. The

estimator for θb, for b ∈ {L,U}, is then given by:

θ̂b =

∑
i

(
ψb+(Gi, ζ̂i)1{p(X∗

1 )≤1} + ψb−(Gi, ζ̂i)1{p(X∗
1 )>1}

)
∑

i

(
ψR(Gi, ζ̂i)1{p(X∗

1 )≤1} + ψR+(Gi, ζ̂i)1{p(X∗
1 )>1}

) . (40)

I implement it following the baseline approach. Since a weighted generalized

quantile forests estimator is not available, I estimate q0 using quantile regressions.

Figure SA6 presents the estimates for women’s outcomes, which resemble the

baseline results.
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Table SA1: Moment Functions for Covariate-Conditional Monotonicity

Moment functions

ψ−
L (W, ζ0)

Z1

e∗1(X
∗
1 )
(1−D+)Y −Πw

j=1
1−Zj

1−e∗j (X
∗
j )
(1−D+)Y 1{Y >q0(1−1/p(X∗

1 ),X
∗
1 )}

−q0(1− 1/p(X∗
1 ), X

∗
1 )
[

Z1

e∗1(X
∗
1 )
(1−D+ − r+(X∗

1 ))

−Πw
j=1

1−Zj

1−e∗j (X
∗
j )

1
p(X∗

1 )
(1−D+ − r1(X

∗
1 ))

−Πw
j=1

1−Zj

1−e∗j (X
∗
j )
(1−D+)(1{Y >q0(1−1/p(X∗

1 ),X
∗
1 )} − 1/p(X∗

1 ))
]

−Z1−e∗1(X
∗
1 )

e∗1(X
∗
1 )

β+(1, X∗
1 )r

+(X∗
1 )

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−e∗j (X
∗
j )

e∗k(X
∗
k)−Dk

1−e∗k(X
∗
k)

×
[ (
rk(X

∗
1 )r

L
k (X

∗
k)z

L−
k (X∗

k) +
q0(1−1/p(X∗

1 ),X
∗
1 )

p(X∗
1 )

(r1(X
∗
1 )− rk(X

∗
1 ))

)
+q0(1− 1/p(X∗

1 ), X
∗
1 )rk(X

∗
1 )(1/p(X

∗
1 )− rLk (X

∗
k))

]
ψ−
U (W, ζ0)

Z1

e∗1(X
∗
1 )
(1−D+)Y −Πw

j=1
1−Zj

1−e∗j (X
∗
j )
(1−D+)Y 1{Y <q0(1/p(X∗

1 ),X
∗
1 )}

−q0(1/p(X∗
1 ), X

∗
1 )
[

Z1

e∗1(X
∗
1 )
(1−D+ − r+(X∗

1 ))

−Πw
j=1

1−Zj

1−e∗j (X
∗
j )

1
p(X∗

1 )
(1−D+ − r1(X

∗
1 ))

−Πw
j=1

1−Zj

1−e∗j (X
∗
j )
(1−D+)(1{Y <q0(1/p(X∗

1 ),X
∗
1 )} − 1/p(X∗

1 ))
]

−Z1−e∗1(X
∗
1 )

e∗1(X
∗
1 )

β+(1, X∗
1 )r

+(X∗
1 )

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−e∗j (X
∗
j )

e∗k(X
∗
k)−Dk

1−e∗k(X
∗
k)

×
[ (
rk(X

∗
1 )r

U
k (X

∗
k)z

U−
k (X∗

k) +
q0(1/p(X∗

1 ),X
∗
1 )

p(X∗
1 )

(r1(X
∗
1 )− rk(X

∗
1 ))

)
+q0(1/p(X∗

1 ), X
∗
1 )rk(X

∗
1 )(1/p(X

∗
1 )− rUk (X

∗
k))

]
ψR+(G, ζ0) r+(X∗

1 ) + (1−D+ − r+(X∗
1 ))

Z1

e∗1(X
∗
1 )

Nuisance functions

ζ0(x∗1, . . . , x
∗
w) {e∗1(x∗1), . . . , e∗w(x∗w), r1(x∗1), . . . , rw(x∗w), r+(x∗1), q(p(x∗1), x∗1), q(1− p(x∗1), x

∗
1),

β1(x∗1), . . . , β
w(x∗w), β

+(x∗1), z
U+(x∗1), z

L+(x∗1), z
U−
1 (x∗1), . . . , z

U−
w (x∗w), q

0(1/p(x∗1), x
∗
1),

q0(1− 1/p(x∗1), x
∗
1), z

L−
1 (x∗1), . . . , z

L−
w (x∗w), r

L
1 (x

∗
1), . . . , r

L
w(x

∗
w), r

U
1 (x

∗
1), . . . , r

U
w (x

∗
w)}

q0(u, x) inf{q : u ≤ E[1{Y≤q}/Π
w
j=2(1− e∗j (X

∗
j )) | X∗

1 = x,D = 0]/
E[Πw

j=2(1− e∗j (X
∗
j )) | X∗

1 = x,D = 0]}
zL−
k (x) E[Y/Πw

j=k+1(1− e∗j (X
∗
j )|Y ≥ q0 (1− 1/p(X∗

1 ), X
∗
1 ) , D = 0, X∗

k = x]

E[Πw
j=k+1(1− e∗j (X

∗
j )|Y ≥ q0 (1− 1/p(X∗

1 ), X
∗
1 ) , D = 0, X∗

k = x]

zU−
k (x) E[Y/Πw

j=k+1(1− e∗j (X
∗
j )|Y ≤ q0 (1/p(X∗

1 ), X
∗
1 ) , D = 0, X∗

k = x]

E[Πw
j=k+1(1− e∗j (X

∗
j )|Y ≤ q0 (1/p(X∗

1 ), X
∗
1 ) , D = 0, X∗

k = x]

rLk (x) E[1Y >q0(1−1/p(X∗
1 ),X

∗
1 )
/Πw

j=k+1(1− e∗j (X
∗
j )|D = 0, X∗

k = x]

E[Πw
j=k+1(1− e∗j (X

∗
j )|D = 0, X∗

k = x]

rUk (x) E[1Y <q0(1/p(X∗
1 ),X

∗
1 )
/Πw

j=k+1(1− e∗j (X
∗
j )|D = 0, X∗

k = x]

E[Πw
j=k+1(1− e∗j (X

∗
j )|D = 0, X∗

k = x]
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Figure SA6: Effects on Women Under Covariate-Conditional Monotonicity

Note: Effects of motherhood on women’s annual work hours and earnings (in EUR), estimated
allowing the direction of monotonicity to vary with covariates; see Appendix SA1.4. Time rela-
tive to first intrauterine insemination. Sample includes all women who underwent intrauterine
insemination for their first child between 2013 and 2016 and were cohabiting with a male partner
in the year before the first procedure.

SA1.5 Work Hours for Unobserved Leave

I define maximum-leave-adjusted hours by scaling women’s reported work

hours in each childbirth year by 36/52, accounting for up to 16 weeks of leave.

Since the control group consists of women without children, this adjustment en-

sures that effects on actual hours fall within the union of bounds from reported

and adjusted values. Figure SA7 shows results for female work hours and the

corresponding gender gap. The estimates change little beyond the first year of

parenthood.

SA1.6 Relative and Cumulative Effects

Figure SA8 shows the estimated parenthood effects relative to childlessness, as

well as cumulative impacts on women’s outcomes and the share of gender inequal-

ity among parents explained by parenthood over six years.

SA1.7 Age Difference Between Partners

My estimates of the share of within-couple gender inequality caused by parent-

hood focus on the within-couple gender gap in each year after becoming parents.

This gap also reflects within-couple age differences, which may distort its relation

to aggregate gender inequality, as men’s outcomes are measured at systematically

older ages. If work hours and earnings rise with age, this could lead my estimates

to understate the aggregate contribution of parenthood.

Ideally, cumulative lifetime outcomes would address this concern, but such data
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Figure SA7: Leave-Adjusted Estimates of Work Hours

Note: The effects of parenthood on women’s annual work hours and the share of within-couple
gender inequality in hours caused by parenthood, adjusting for up to 16 weeks of maternity
leave; see Appendix SA1.5 for details. Time relative to the first intrauterine insemination (IUI).
Sample includes all couples in which the woman underwent IUI for their first child between 2013
and 2016 and was cohabiting with a male partner in the year prior to the first procedure.

is unavailable. Instead, I lag men’s outcomes to match the woman’s age (e.g., by

two years if she is younger), so gender gaps reflect comparable life-cycle stages.

This means that in the first few years after the first IUI, some men’s outcomes are

measured before parenthood, which is appropriate if fatherhood effects are small.

The adjustment reduces the sample by 19%, yielding 10,310 observations.

Figure SA9 presents the results, showing that the adjustment has little impact

on the estimates. The upper bound on the share of within-couple gender inequality

in work hours decreases to at most 50% in each year, while the bound for earnings

generally increases by no more than 5 percentage points per year.

SA1.8 Heterogeneity by Covariates

To assess heterogeneity by pre-IUI covariates, I adapt the approach of Heiler

(2024), which involves regressing the constructed moments (both for the numer-

ator and the denominator used to construct the bounds) on dummies for differ-

ent heterogeneity dimensions (e.g., below- vs. above-median age). Figure SA10

presents the results for women’s cumulative work hours and earnings over the first

six years after the first IUI, split by median age, earnings, and work hours in the

year before the first IUI. The results do not rule out homogeneous effects. Bounds

are wider for groups with higher pre-IUI earnings and hours, reflecting greater

outcome dispersion.
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Panel B: Women's earnings (including paid leave)
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Panel C: Men's hours (including paid leave)
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Panel D: Men's earnings (including paid leave)
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Panel E: Total hours (including paid leave)
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Figure SA8: Relative and Cumulative Effects of Parenthood

Note: Panels A–D present yearly effects relative to childlessness, calculated as a/b, where a is
the average effect for women reliant on procedure success (or their partners) and b is the average
point-identified control outcome for the same group. Panels E–F show cumulative effects on
women’s outcomes over the first six years of motherhood and the share of gender inequality
among parents caused by parenthood during this period, estimated using cumulative outcomes
over the first six years as the outcome in year six. All estimates are based on orthogonal
moments from the baseline specification. Confidence intervals are based on the Delta method.
Time relative to first intrauterine insemination. Sample includes all women who underwent
intrauterine insemination for their first child between 2013 and 2016 and were cohabiting with
a male partner in the year before the first procedure, as well as these partners.
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Figure SA9: Age-adjusted Share of Within-couple Gender Inequality Caused by Par-
enthood

Note: Share of within-couple gender inequality caused by parenthood. Calculated as 1 − a/b,
where a is the average gap in the control outcome and b is the lower or upper bound for the
average treated outcome, both estimated using orthogonal moments from the baseline specifica-
tion. Confidence intervals are based on the Delta method. Time relative to the woman’s first
intrauterine insemination, and outcomes for both men and women are measured at the specific
age that the woman is at that moment. Sample includes all couples in which the woman under-
went intrauterine insemination for their first child between 2013 and 2016, was cohabiting with
a male partner in the year prior to the first procedure, and for whom partner outcomes in the
respective year are observed (10,310 observations).
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Figure SA10: Heterogeneity in Cumulative Effects for Women in the First Six Years

Note: Heterogeneity in cumulative effects on women’s work hours and earnings (EUR) in the
first six years of motherhood, estimated using the baseline specification. The sample is split
by median age, earnings, and work hours in the year before the first intrauterine insemination.
Sample includes all women who underwent intrauterine insemination for their first child between
2013 and 2016 and were cohabiting with a male partner in the year before the procedure.
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SA1.9 Selection into Parenthood Timing

Next, I assess selection into parenthood timing. More specifically, I ask how

labor market outcomes would differ between individuals who chose to have children

at different moments in the absence of children. One way to assess this is to use a

representative sample (or all IUI mothers) and compare average outcomes between

individuals who already have children and those who will have them later. My

estimates of the effects of parenthood could then be used to net out the part of

this difference caused by parenthood, leaving only differences that would arise in

the absence of children. Yet this approach is problematic, because the effects for

women reliant on IUI may differ from those in the broader population (or even

the full IUI sample), and such a comparison would erroneously attribute these

differences to selection into timing.

I introduce an alternative approach. I use the timing of the first IUI as a proxy

for chosen fertility timing. Then, leveraging IUI success, I quantify differences in

childless career trajectories among reliers who opt for childbearing at different

ages. Finally, I combine these estimates with bounds on the effect of parenthood

in this group to quantify the share of the gender gap that can be explained by

each of the two factors.

I adapt the event-study specification from Kleven et al. (2024):

Y g
it =

∑
k ̸=−1

αg
k1{Tit=k} +

∑
a

βga1{Ageit=a} +
∑
s

γgs1{t=s} + νgit, (41)

where Y g
it is the labor market outcome of individual i of gender g in period t. The

first term reflects time relative to the event: the year before pregnancy in Kleven et

al. (2024), or the year before first IUI in my analysis. The second and third terms

control for age and calendar year. The parameter of interest, αg
k, measures average

outcome differences k years after the event, relative to similarly aged individuals

a year before the event.

I estimate (41) using women who remain childless through the end of the sample

period and their partners.12 Since none of these women have children, αg
k captures

average differences in outcomes between reliers who chose to have children k years

ago and those who will choose to do so in a year, in the absence of children.

Figure SA11 presents average control outcomes since the first IUI for women

who remain reliers until the end of the sample period, and their partners. For both

12I weight observations by 1/(ΠA
j=1(1−ej(Xj))) to ensure that reliers with higher

willingness are not underrepresented, thereby maintaining comparability with my
main estimates. I use a balanced panel covering one year before the first IUI up
to six years after.
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Figure SA11: Career Progression in the Absence of Children

Note: Estimated annual work hours and earnings (in EUR) for relier couples in the absence
of children. Realized – estimated using couples who remain childless at the end of the sample
period; Extrapolated – constructed using similarly aged individuals in couples one year away from
their first IUI; see Section SA1.9 for procedure details. Time relative to the first intrauterine
insemination. Sample includes all women who underwent intrauterine insemination for their first
child between 2013 and 2016, were cohabiting with a male partner in the year before the first
procedure, and their partners.

hours and earnings, career trajectories evolve smoothly, and gender gaps remain

stable. The figure also shows outcomes extrapolated from similarly aged reliers

who delay childbearing, obtained by subtracting αg
k. Extrapolated and realized

profiles align closely in the early years, when based on individuals with comparable

fertility timing, but diverge over time as timing differences grow. Men’s realized

earnings exceed those extrapolated from later fathers, while work hours remain

similar. For women, both earnings and hours fall short of extrapolated profiles.

These patterns suggest positive selection into early fatherhood and negative

selection into early motherhood. This selection may reflect differences in traits

affecting labor market outcomes independent of parenthood, such as human capital

differences (see Adams et al., 2024, for discussion). It may also reflect factors

that shape outcomes specifically in the absence of children, such as unmet early-

childbearing goals that depress women’s outcomes and enhance men’s (see Bögl et

al., 2024, for discussion). Regardless of the underlying cause, these results indicate

that couples who delay childbearing would exhibit smaller gender gaps even in the

absence of children.

I next ask how much of the gender inequality among parents reliant on IUI can

be jointly explained by the effect of parenthood and by differences in outcomes

between late and early parents in the absence of children. More specifically, how

13
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Figure SA12: Share of Within-couple Gender Inequality Explained by Effects of Par-
enthood and Selection

Note: Share of within-couple gender inequality in annual work hours and earnings (in EUR)
explained by parenthood. Causal refers to the causal effect of parenthood alone (baseline esti-
mates); Causal + selection includes both the causal effect and differences between early and late
parents in the absence of children. See Section SA1.9 for procedural details. Time is measured
relative to the first intrauterine insemination. The sample includes all women who underwent
intrauterine insemination for their first child between 2013 and 2016, were cohabiting with the
male partner in the year before the first procedure, and their partners.

much of the gender inequality among parents would disappear if they had no

children and if early parents performed as well as late parents in the absence of

children?13 Figure SA12 presents the results, showing that toward the end of the

sample period, the two factors together explain 65 to 80% of the gap in work hours

and 60 to 81% of the gap in earnings. In contrast, baseline estimates indicate that

parenthood alone accounts for up to 59% and 43% of the respective gaps. These

results suggest that both factors play a substantial role in explaining the difference

in gender gaps between early parents and couples who delay childbearing.

SA1.10 Mental Health and Relationship Stability

Women who remain childless after trying to achieve pregnancy may experience

mental health deterioration or relationship breakdowns, potentially affecting labor

market outcomes. On the one hand, these consequences may be an integral part

13I start with a point in the bounds on the effect of parenthood on the gender
gap for reliers: E[Y gap

1k (1)−Y gap
0k (0) | Rk = 1], where Y gap

zk (d) represents the within-
couple gap between male and female potential outcomes k years after the first IUI
when the outcome of the first IUI is z and the parenthood status is d. I then add
the difference in childless outcomes between early and late relier fathers, αmale

k ,
and subtract the corresponding difference for relier mothers, αfemale

k . I divide the
result by the gender gap in the case of parenthood, E[Y gap

1k (1) | Rk = 1].
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of the effect of not having children, making it important to understand the extent

to which these mechanisms drive the labor market impacts. On the other hand,

such issues may also stem not from childlessness itself but from fertility treat-

ments or from the experience of trying and failing to conceive, which could limit

the generalizability of the estimates to settings where women voluntarily remain

childless.

Before assessing these factors, it is useful to clarify when the side effects of fail-

ing to conceive matter for generalizability. They are arguably less concerning for

my estimates of timing effects: I find that women who experience delays perform

better, and doing so despite potential side effects reinforces that delaying child-

bearing mitigates losses. By contrast, they are more important for my estimates

of the effects of parenthood and of selection into timing, where I find that large

gender gaps persist even when couples fail to conceive, and women who fail to

conceive underperform those who have not yet tried. If these patterns reflect such

side effects, the estimates may understate the role of parenthood and overstate

selection beyond my sample.

To provide suggestive evidence on mental health effects, one might estimate

the impact of conceiving at the first IUI on antidepressant uptake. The estimates,

reported in Appendix SA1.11, are precise and indistinguishable from zero. How-

ever, this does not directly address the concern, since both conceiving and failing

to conceive may worsen mental health relative to not attempting.

To directly assess the role of mental health and relationship impacts, I modify

the baseline approach to bound the labor market effects for women who, in the

event of procedure failure, would (i) remain childless, (ii) be cohabiting with or

registered to a partner, and (iii) not initiate antidepressant use. If the adjusted

bounds remain close to the baseline, it indicates that these issues, independent of

the source, have limited empirical relevance for the labor market impacts.

The formal procedure classifies women who meet condition (i) but not (ii) or

(iii) as having conceived naturally, thereby removing them from the group used

to construct the bounds. This adjustment also addresses potential monotonicity

violations by excluding women who would have conceived naturally had IUI suc-

ceeded but did not after failure because of subsequent mental health problems or

relationship breakdowns.14

The procedure is conservative because it also excludes women who would have

experienced such issues irrespective of parenthood, as well as those whose labor

14The formal argument amounts to adapting Theorem 1 by redefining R and
D.
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Figure SA13: Effects for Women Less Affected by Failed Conception

Note: Effects of motherhood on women’s annual work hours and earnings (in EUR). Baseline
refers to effects for the full sample; Less affected women refers to effects for women who would
continue cohabiting with a partner and would not initiate antidepressant use after failing to
conceive. See Section SA1.10 for procedural details. Time relative to the first intrauterine
insemination. Sample includes all women who underwent intrauterine insemination for their
first child between 2013 and 2016 and were cohabiting with a male partner in the year before
the first procedure.

market outcomes would have remained unaffected even if the issues arose due

to childlessness or procedure failure. This occurs because it is not possible to

identify which women who conceived at the first IUI fall into these categories, so

the trimming step must discard more observations from the tails, which in turn

produces wider bounds. If such women are primarily the ones experiencing these

issues, the bounds will widen without shifting systematically in either direction,

much as if some childless women had been excluded at random.

Figure SA13 presents the results. Overall, the estimates change only modestly:

the bounds remain close to the baseline in the early years and widen slightly over

time, with no systematic pattern in either direction. In the most extreme case,

the share of within-couple gender inequality caused by parenthood rises to 63% for

work hours and 58% for earnings (not reported). Thus, while mild mental health

or relationship difficulties cannot be ruled out, the analysis indicates that severe

mental health problems and separation play at most a modest role in driving the

estimates.

SA1.11 Effects on Mental Health

Figure SA14 presents the estimates for the effect on antidepressant uptake

based on the sequential IV approach. The effects are precisely estimated and

indistinguishable from zero.
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Figure SA14: Effects on Antidepressant Uptake

Note: Effects of motherhood on antidepressant uptake estimated using the sequential instru-
mental variable approach; see Appendix SA3. Time is measured relative to the first intrauterine
insemination. Sample includes all women who underwent intrauterine insemination for their first
child between 2013 and 2016 and were cohabiting with a male partner in the year before the
first procedure.

SA2 Dynamic Framework

This section demonstrates the mapping between the cross-sectional framework

used throughout the paper and a dynamic framework, and discusses why explicitly

specifying the dynamic framework aids little in the interpretation of timing effects.

Time starts at the moment of a woman’s first IUI and ticks up to period T .

Without loss of generality, childless women can choose whether to undergo one IUI

each period. Define Wt ∈ {1, . . . , w}, Rt ∈ {0, 1}, and R+
t ∈ {0, 1} as the period-

specific counterparts of W , R, and R+, measured up to t. Taken together, Wt and

Rt characterize the periods in which IUI and non-IUI conceptions occur, allowing

arbitrary breaks between attempts and non-IUI conception. Let Y ′
t (k) denote the

potential outcome in period t if treatment starts in period k, and Y ′
t (∞) if the

woman never receives treatment.

Let Z ′
j ∈ {0, 1} indicate whether a successful IUI occurs in period j, and

define the treatment indicator in period t as Dt = max({Z ′
j : j ≤ t} ∪ {1− Rt}).

For notational convenience, define At = t, as if all women underwent IUI in every

period up to t, and letX ′
t be covariates in period t, implicitly including an indicator

for actually undergoing IUI this period.

Assumption 5 (Conditional Sequential Unconfoundedness).

(Y ′
t (d), R

+
t , Rt,Wt) |= Z ′

j | X ′
j for all d, j, t and X ′

j ∈ X ′
j .
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This assumption states that IUI success in period j is independent of potential

outcomes and latent types conditional on observed covariates. Including the indi-

cator for undergoing IUI ensures it holds trivially for women who do not undergo

IUI this period (since then Z ′
j = 0 a.s.). It differs from Assumption 3, which as-

sumed independence among women sharing the same attempt number rather than

the same period, but the two can be mapped by including both attempt number

and time since the first IUI in the covariates.

Let H = min({t : Rt = 0} ∪ {∞}) denote the period in which a woman

conceives if all IUI attempts fail, or when she becomes a non-relier, with H = ∞
if she remains a relier until T . Under Assumption 5 and adapted Assumptions 2

and 4, plugging period-t data into the moments of Theorem 3 yields bounds on

E[Y ′
t (0)−Y ′

t (H) | H ≤ t], which correspond to the average timing effect for women

who become non-reliers in or before period t.

Since the timing of the first IUI and the timing of conception without IUI

are observed, the distribution of H is identified, and hence so is the average shift

in timing up to period t, E[H | H ≤ t]. However, among women whose first

IUI succeeds, it is not possible to determine how much each would have delayed

conception had the IUI failed. Consequently, the bounds are only informative

about the effect of an average timing shift induced by IUI failure, highlighting the

limited additional usefulness of a fully dynamic framework for interpretation.

Finally, assuming no anticipation, Y ′
t (k) = Y ′

t (∞) for t < k, bounds on treat-

ment effects E[Y ′
t (0) − Y ′

t (∞) | H > t] for women who remain reliers in the

current period follow from Theorem 3. The mapping into cross-sectional potential

outcomes in period t is given by Y ′
t (0) = Y1(1), Y

′
t (∞) = Y0(0), Y

′
t (H) = Y0(1).

SA3 Auxiliary Estimation Details

I implement the IV approach following Lundborg et al. (2017). The first-stage

specification is:

D = Z1β
FS +X1χ

FS + εFS , (42)

and the second-stage specification is:

Y = D̂βIV +X1χ
IV + εIV , (43)

where εFS and εIV are individual-level error terms, D̂ denotes the fitted values

from the first stage, and the coefficient βIV captures the effect of parenthood.

For the recursive IV approach, assume that a woman’s outcome in period k

from first IUI is

Yk = Y0k(0) +
∑
j≤k

1{Kk=j}τj + εk, (44)
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Table SA2: Balance in Later Procedures

(2) (3) (4) (5) (6) (7) (8) (9) (10)

Work (W) 0.003 -0.015 0.010 -0.003 0.017 0.002 -0.007 0.016 0.022

(0.009) (0.010) (0.010) (0.011) (0.012) (0.016) (0.015) (0.015) (0.019)

Work (P) 0.007 0.018 0.009 0.016 -0.009 -0.003 -0.017 0.005 0.040

(0.010) (0.010) (0.012) (0.012) (0.016) (0.015) (0.020) (0.021) (0.024)

Hours (W) 11.828 -17.024 30.313 16.523 43.473 23.825 -27.325 63.826 67.821

(17.745) (19.650) (19.857) (22.052) (24.966) (30.057) (31.365) (34.966) (41.903)

Hours (P) 16.880 16.806 27.356 29.854 -8.164 -7.812 -43.177 4.368 29.210

(21.447) (21.469) (23.492) (25.973) (31.884) (32.247) (38.712) (45.942) (50.318)

Earnings 1000s EUR (W) 1.130 -0.343 0.908 0.938 1.369 -0.090 -0.068 0.683 1.679

(0.661) (0.649) (0.746) (0.858) (0.952) (0.953) (1.102) (1.215) (1.732)

Earnings 1000s EUR (P) -0.377 0.120 2.262 1.384 -0.224 -0.873 0.136 -0.322 4.169

(0.991) (0.917) (1.073) (1.217) (1.412) (1.381) (1.624) (1.781) (3.537)

Observations 10,744 8,960 7,357 5,922 4,642 3,412 2,386 1,632 1,041

Joint p-val. 0.665 0.335 0.548 0.775 0.786 0.647 0.326 0.853 0.045

Note: Each column reports the difference in average characteristics between women whose respective procedure succeeded
and those for whom it failed, among those who underwent the procedure, adjusted for age and education using inverse
probability weights from the baseline specification. The sample consists of women who underwent intrauterine insemination
for their first child between 2013 and 2016, with no prior assisted conception procedures, and who were cohabiting with a
male partner in the year before the first procedure. Labor market outcomes measured in the year before first procedure.
Earn. – earnings, (W) – woman, (P) – partner. Standard errors in parentheses.

where Yzk(d) denotes the potential outcome in period k when the first IUI out-

come is z and parenthood status is d; Kk is the number of years since first birth;

and τj = E[Y1j(1) − Y0j(0)] denotes the average effect of being in the jth year of

parenthood. This specification assumes that parenthood effects depend on moth-

erhood duration but not on the timing of becoming a parent and are otherwise

homogeneous between women.

To implement the recursive IV estimator, I first apply the doubly-robust IV

estimator to data on Y1 and D1, yielding an estimate τ̂1 of τ1. I then construct

the one-year-of-parenthood-corrected outcome Ŷ 1
k = Yk− 1{Kk=1}τ̂1. Applying the

same estimator to Ŷ 1
2 and D1 yields an estimate τ̂2 of τ2. I then construct the

two-year-of-parenthood-corrected outcome Ŷ 2
k = Ŷ 1

k − 1{Kk=2}τ̂2, allowing me to

estimate τ3, and so on. For the sequential recursive IV approach, I repeat these

steps using the sequential doubly-robust IV estimator.

SA4 Additional Balance Results

Table SA2 presents balance results for subsequent procedures up to the tenth.

Since these procedures also include IVF, I additionally control for each partner’s

age interacted with treatment type. This ensures that procedure success only

needs to be as good as random among women who undergo the same procedure

(and are of similar age), allowing for selection into IUI or IVF based on women’s

types and potential outcomes. Overall, the results suggest no systematic differ-

ences in pre-IUI outcomes between those with successful and unsuccessful subse-

quent procedures, supporting the conditional local sequential unconfoundedness

assumption.
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