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Abstract

I study how parenthood affects women’s labor market outcomes and gender

inequality, using quasi-experimental variation in the success of assisted concep-

tion procedures. To account for births following an initially failed procedure, I

develop a method to quantify treatment effects in quasi-experimental settings

with dynamic non-compliance, where individuals may opt to undergo assign-

ment multiple times. Using administrative data from the Netherlands, I find

that parenthood persistently reduces women’s work hours and income by 9 to

27 percent. Despite these substantial effects, I find that at least half of the ob-

served within-couple gender inequality in these outcomes after childbirth cannot

be attributed to parenthood. I propose a unified framework to disentangle and

quantify the bias in conventional estimators arising from selective parenthood

timing and timing-dependent effects, demonstrating that these factors are the

key to reconciling conflicting findings in the literature.
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1 Introduction

The differential impact of parenthood on the careers of women and men is widely

considered a major contributor to gender disparities in the labor market (Goldin,

2014; Bertrand, 2020; Cortés & Pan, 2023; Kleven et al., 2024). Quantifying this

impact is central to understanding gender inequality and informing policy.

Assessing the career impact of parenthood is challenging because of selection and

dynamic effects. Selection arises when fertility decisions—or the timing of parent-

hood—correlate with labor market outcomes independent of parenthood, such as

when women with greater career potential delay childbearing. Dynamic effects arise

when the impact varies by timing, such as when early parenthood permanently hin-

ders career progression or when delaying parenthood results in missed opportunities

at the peak of one’s career.

Two reduced-form approaches are central to the debate, each addressing either

selection or dynamic effects but not both, yielding conflicting results. The event study

approach (Kleven et al., 2019, 2024) accounts for dynamic effects but assumes fertility

timing is not selective. The approach by Lundborg et al. (2017) addresses selection

using in vitro fertilization (IVF) success as a quasi-experiment in an instrumental

variable framework. Because most women eventually conceive after initial IVF failure,

it assumes effects are independent of timing. In Denmark, IV estimates suggest that

parenthood has a minimal effect on gender inequality in earnings, whereas event study

estimates—both in the general population and the IVF sample—attribute most of the

inequality to parenthood (Lundborg et al., 2024).

In the first part of this paper, I propose a new method to quantify the effects

of parenthood by leveraging assisted conception procedures (ACP), such as IVF or

artificial insemination, while simultaneously addressing selection and dynamic effects.

The method compares labor market outcomes between women who conceive during

their first ACP and those who remain childless after its failure. A key challenge is that

women who remain childless after a failed first ACP may systematically differ from

those who conceive. The key innovation in addressing this challenge is to leverage

quasi-experimental variation across women’s entire ACP histories. This is complex

because the decision to pursue additional ACPs may be selective and because some
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women may conceive without ACPs. I first demonstrate that a specific weighting

scheme—assigning higher weight to childless women with more failed ACPs—is suf-

ficient to address selection into additional ACPs. Then, I use a bounding procedure

to account for non-ACP births, assuming the most extreme selection consistent with

the data.

The method does not rely on assumptions about heterogeneity across individuals

or time, nor about selection into subsequent ACPs or non-ACP conception. The only

core assumption is that the success of each ACP is as good as random, conditional

on observables—an assumption used in existing work that relies on first-procedure

success but here extended to subsequent procedures. The identified bounds are sharp,

meaning that no effect within them can be ruled out without additional assumptions

or data. To tighten the bounds, I assume that women who have non-ACP children

after a successful ACP would have had at least one child if ACPs had failed, reflecting

a determination to have at least one child over having additional children.

I apply my approach to a novel Dutch administrative dataset linking detailed

labor market information from tax records with comprehensive hospital records on

ACPs. My analysis focuses on couples trying to conceive their first child through

intrauterine insemination, also known as artificial insemination. I find that parent-

hood persistently reduces women’s annual work hours by 10%–24% and income by

6%–32%. These effects last at least seven years after first birth. For men, the bounds

are similar in length but centered near zero. Over this period, parenthood causes

36%–54% of within-couple gender inequality in work hours and up to 46% in income.

In the second part of this paper, I focus on the conflicting findings between lead-

ing methods. Because Danish event study estimates are nearly identical for ACP and

general samples but differ substantially from IV estimates (Lundborg et al., 2024),

understanding why the methods diverge is crucial for assessing the generalizability

of ACP-based findings. While differences in estimates within the same sample may

indicate bias in either method, other factors may also contribute. First, the methods

estimate effects for different moments of becoming a parent. Second, they consider

different counterfactual scenarios for not having children—ranging from not attempt-

ing to conceive to trying but failing—which may have distinct mental health and

relationship implications. Third, they estimate effects for different subpopulations.
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If these factors substantially influence estimates even within the ACP sample, ACP-

based estimates may offer limited insight into effects in the general population.

I begin by replicating IV and event study results using Dutch data, revealing sub-

stantial differences consistent with Danish findings. Then, I show that differences in

the moment of becoming a parent and severe mental health or relationship conse-

quences following failed conception have little explanatory power for the discrepancy.

Afterward, I assess selective timing and dynamic effects within a consistent subpop-

ulation. I start by bounding the effects of delaying parenthood, showing that it may

have minimal impact or cause IV estimates to substantially understate motherhood’s

career costs. Next, I use the timing of failed ACPs as a proxy for fertility decisions,

comparing women’s actual childless career trajectories with those of women who post-

poned motherhood—mirroring the event study approach. I find that early mothers

are negatively selected, while early fathers are positively selected, leading the event

study estimates to overstate parenthood’s role in gender inequality. This bias alone

is substantial enough to reconcile the conflicting results across methods and samples,

supporting the extrapolation of ACP-based estimates to the general population.

My work is linked to the large literature on the effects of children on gender in-

equality in the labor market (see Bertrand (2011), Blau & Kahn (2017), and Olivetti

et al. (2024) for an overview).1 It is most closely related to two recent working pa-

pers that exploit women’s first in vitro fertilization procedure and carefully address

dynamic effects: Bensnes et al. (2023) and Gallen et al. (2023). These studies rely on

assumptions about effect heterogeneity across individuals and time. These assump-

tions are closely related to wave-ignorability assumptions used by Ferman & Tecchio

(2023) and Angrist et al. (2024) in methodological work on dynamic non-compliance.

The key advantage of my method is that it does not require such assumptions. Us-

1This includes studies that focus on the extensive fertility margin (Rosenzweig &
Wolpin, 1980; Bronars & Grogger, 1994; Angrist & Evans, 1996; Jacobsen et al., 1999;
Iacovou, 2001; Cruces & Galiani, 2007; Maurin & Moschion, 2009; Hirvonen, 2009;
Vere, 2011); studies that restrict dynamic effects but address selection using various
quasi-experiments (Hotz et al., 2005; Agüero & Marks, 2008; Cristia, 2008; Miller,
2011; Brooks & Zohar, 2021; Gallen et al., 2023); and studies that address dynamic
effects but restrict selection, including those using timing differences (Fitzenberger et
al., 2013; Angelov et al., 2016; Chung et al., 2017; Bütikofer et al., 2018; Eichmeyer &
Kent, 2022; Melentyeva & Riedel, 2023) and structural methods (Adda et al., 2017).
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ing my identification results, I develop a test for homogeneity assumptions and find

they are unsupported in my application, introducing substantial bias.2 Additionally,

compared to these studies, a key focus of my analysis is assessing how various factors

contribute to differences across methods—including those that these studies restrict

by assumption.

My primary empirical contribution is to provide estimates of the career impact

of parenthood that simultaneously account for selective fertility and dynamic effects.

I demonstrate that these factors may substantially bias leading estimators and are

the key to reconciling the main conflicting findings in the literature. My secondary

empirical contribution concerns improved external relevance compared to existing

studies leveraging ACPs, all of which focus on IVF and Scandinavian data. By

focusing on intrauterine insemination, which is less costly, less invasive, and more

accessible, I mitigate concerns about sample selectivity of IVF couples and procedure

side effects. Additionally, using data from the Netherlands, where family policies

align with the OECD average, makes my findings more relevant for common policy

settings.

Methodologically, my approach builds on ideas from two branches of literature.

The first step of my approach, which accounts for selection into parenthood via sub-

sequent ACPs, leverages insights from the extensive biostatistics literature on dy-

namically assigned treatments (see Hernán & Robins (2020) for an overview). In

economics, it is most closely related to a procedure developed by Van den Berg

& Vikström (2022), which explicitly incorporates treatment assignment eligibility.

The second step of my approach, which addresses selection into parenthood through

non-ACP means, relates to the extensive literature on bounds for treatment effects,

beginning with Manski (1989, 1990). It is most closely related to a procedure typi-

cally used to account for sample selection, introduced by Zhang & Rubin (2003) and

further developed by Lee (2009). I present a detailed discussion of how my approach

relates to and differs from these methods in Section 3.4.

My primary methodological contribution is an approach to bound treatment ef-

fects in settings with quasi-experimental assignment and dynamic non-compliance.

2Another advantage of my method is that it does not rely on a longitudinal data
structure, allowing to estimate impacts on outcomes observed irregularly or only once.
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Particularly, when individuals obtain treatment by undergoing multiple assignments

or through entirely selective pathways. In addition to relaxing assumptions employed

by the IV approach, the method quantifies effects for a broader group—those who

comply with either the initial or subsequent treatment assignment, rather than only

those who comply with the initial assignment. My method also makes it possible

to assess effects over time for a stable group, which is not possible with the IV ap-

proach. Examples of other potential applications include educational programs with

multiple admission cycles, job training programs where unassigned individuals can

reapply, legal settings where individuals are assigned to judges with varying propen-

sities to sanction and where unsanctioned individuals may reoffend and experience

future sanctions, and clinical trials in the extension phases where participants can

enroll in other trials or pursue alternative therapies.

The remainder of the paper is structured as follows. Section 2 introduces the

model. Section 3 demonstrates the identification challenge, presents intuition for

the approach, states the formal results, discusses relations to existing methodological

literature, and outlines estimation. Section 4 describes the institutions, ACPs, and

the data, and presents support for the assumptions. Section 5 presents the main

estimates of the effects of parenthood on women’s labor market outcomes and gender

inequality. Section 6 covers generalizability, comparisons with existing methods, and

concerns about mental health and relationship stability. Section 7 concludes.

2 Model

The model adapts the local average treatment effect (LATE) framework (Angrist &

Imbens, 1995), incorporating a standard extension to a dynamic setting. The key

innovation is formalizing how treatment—or parenthood status—depends not only

on the initial treatment assignment (or the outcome of a woman’s first ACP) but also

on the decision to pursue additional assignments (or initiate subsequent ACPs) and

the outcomes of those assignments (or procedure success).

All women start ACP for their first child at time t = 1, ticking up to t. Dt is

the treatment indicator, representing whether a woman has any children in period

t. Treatment is an absorbing state. Women may have multiple children; I focus on
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whether they have any. Yt(0) is the potential outcome in period t if a woman remains

childless, which I refer to as the control outcome. For k > 0, Yt(k) is the potential

outcome in period t if a woman becomes a mother in period k. I refer to Yt(1) as the

treated outcome. A woman’s realized labor market outcome in period t is Yt, and the

relationship between potential and realized outcomes is given by:

Yt = Yt(0)1{DT=0} + Yt(1)1{D1=1} +
t∑

k=2

Yt(k)1{Dk=1,Dk−1=0}.

I characterize each woman by two unobserved variables. First, Wt ∈ {1, . . . , w} is

the total number of ACPs a woman would undergo for her first child up to period t if

all previous ACPs failed. I refer to Wt as the willingness to undergo ACPs, although

it only describes women’s behavior in the scenario where all ACPs fail and does not

require any economic interpretation. Second, Rt ∈ {0, 1} indicates whether a woman

would remain childless up to period t if all Wt ACPs failed. I refer to Rt as the

reliance on ACPs. I refer to women with Rt = 1 as reliers, reliant on ACPs to have

children, and those with Rt = 0 as non-reliers, who would have children even if all

ACPs failed. Wt and Rt may relate to potential outcomes and to each other and may

be known or unknown to women ex-ante.

Reliers are the focus of this paper. They are the most general group of women

whose parenthood status depends on ACP success.3 They are closely related to

compliers in the LATE framework—women who would remain childless if their first

ACP failed (Ct = 1). However, reliers are a more general group, meaning compliers

are a subset of reliers. Reliers additionally include women who would conceive through

a subsequent ACP if the first ACP failed but would remain childless if all ACPs failed;

such women are always-takers in the LATE framework (Ct = 0). There are no never-

takers or defiers because few women who conceive via ACPs remain childless, but the

approach can extend to a setting with never-takers.4

The observed indicator for the success of ACP j is Zj. It takes the value 1 if the

3When outcomes have a bounded support, less informative bounds for all women
can be obtained using Horowitz & Manski (2000).

4The simplest extension is using Zhang & Rubin (2003) bounds for two-side non-
compliance in the second step.
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ACP succeeded, and 0 either if the ACP failed or if a woman did not undergo ACP j.

Note that the index for success of ACP j is different from the time index t, meaning

that insofar there are no restrictions on how many ACPs a woman can undergo in

a given period. To simplify notation, I only count ACPs that occur before the first

child, meaning Zj = 0 for all j such that Zl = 1 for some l < j.

The realized number of ACPs a woman undergoes by period t is At. A woman

undergoes ACPs either until one succeeds or until reaching her maximum willingness.

Formally: At = min ({j : Zj = 1, j ≤ Wt} ∪ {Wt}). The outcome of a woman’s last

ACP up to period t is ZAt . A woman has a child in period t either if an ACP has

succeeded or if she is a non-relier who would have a child even if all ACPs failed:

Dt = ZAt + (1− ZAt)(1−Rt).

The individual-level treatment effect in period t is τ(t) = Yt(1) − Yt(0). The

average treatment effect in period t is τATE(t) = E[τ(t)]. The average treatment

effect in period t for reliers in period t is τATR(t) = E[τ(t) | Rt = 1]. The local

average treatment effect in period t is τLATE(t) = E[τ(t) | Ct = 1]. I discuss other

effects under extensions.

3 Method

In this section, I first outline the limitations of the IV approach, introduce the intu-

ition behind my method, and present formal results. I then relate my approach to

the existing methodological literature and discuss estimation.

To demonstrate the intuition, I leverage the unconditional sequential unconfound-

edness assumption:

Assumption 1 (Sequential unconfoundedness). (Yt(k), Rt,Wt) |= Zj | At ≥ j,

for all j, k, t.

It states that, among women who undergo ACP j, the outcome of ACP j is effec-

tively random—independent of potential outcomes and type. This aligns with the

standard unconfoundedness assumption in previous studies using IVF: among women

undergoing embryo insertion into the uterus, pregnancy resulting from the procedure

is essentially random. Unlike prior studies, this assumption covers not only the first,
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but also subsequent embryo insertions women undergo. It is worth highlighting that

this assumption does not concern the decision to undergo additional procedures, just

the success of each individual procedure after it takes place. It also does not restrict

how success rates vary across procedures. To simplify exposition, I do not distinguish

between IVF and intrauterine insemination when discussing the intuition. The main

method in Section 3.3 accounts for selection into procedure type, procedure-specific

success rates, and other observed factors that influence success, such as age at the

time of the procedure. I discuss empirical support for this assumption in Section 4.3.

I also impose a standard no-anticipation assumption used by existing methods:

Assumption 2 (No anticipation). Yt(k) = Yt(0) for all k > t.

It states that outcomes before becoming a mother do not depend on having children in

the future. This assumption is plausible for conception, as future success is unknown,

but less so for adoption, which may be anticipated; however, adoptions are rare in my

application.5 I also assume that SUTVA holds for all potential outcomes and types.

Finally, to ensure that results are independent of period definitions, I assume that all

births following a failed first ACP occur after the first period: Pr(D1 = 1|Z1 = 0) = 0.

3.1 Instrumental Variable Bias

The IV approach uses the success of women’s first ACP as an instrument for parent-

hood. It starts with the reduced form, which is the difference in average outcomes

between those whose first ACP succeeded and those whose first ACP failed. This

means a group of women who conceived at their first ACP is compared to a mixed

group consisting of childless women (the compliers) and women who had children

later (the always-takers). Under unconfoundedness, the reduced form identifies a

combination of two effects: the average treatment effect for compliers and the timing

effect for always-takers. Assuming that all conceptions after the first ACP fails occur

5Each year, about 40 domestic adoptions occur in the Netherlands, and foreign-
born children make up less than 1% of my sample, including those whose mothers
were abroad at childbirth.
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in the second period, for simplicity of exposition, for any t > 1:

E[Yt|Z1 = 1]− E[Yt|Z1 = 0] =E[Yt(1)− Yt(0)|Dt = 0, Z1 = 0]Pr(Dt = 0|Z1 = 0)

+ E[Yt(1)− Yt(2)|Dt = 1, Z1 = 0]Pr(Dt = 1|Z1 = 0).

Scaling the reduced form by the difference in the share of mothers between the

two groups—the first stage—yields:

E[Yt|Z1 = 1]− E[Yt|Z1 = 0]

E[Dt|Z1 = 1]− E[Dt|Z1 = 0]
=τLATE(t) + E[Yt(1)− Yt(2)|Ct = 0]

Pr(Ct = 0)

Pr(Ct = 1)
.

When the outcomes do not depend on the moment of becoming a mother, meaning

Yt(1) = Yt(2), the second term drops out, and τLATE is identified. In the standard

Rubin (1974) model with only one motherhood outcome, this assumption is covered

by the no-multiple-versions-of-treatment (SUTVA). Otherwise, the second term biases

the IV estimator of τLATE.
6

In the context of parenthood, the bias direction is ambiguous. It may lead to un-

derestimation of career costs if women who have children later face high care demands

at the peak of their careers, or to overestimation if early motherhood permanently

hinders career progression. Because 75% of women whose first ACP fails eventually

have children, even small timing effects can introduce sizable bias.

3.2 Intuition

In this section, I present the intuition behind my bounding approach. I separately

explain how I identify the relier average control outcome and bound their average

treated outcome, and how I use additional information to tighten the bounds.

6Another way to describe this bias is using the negative weights terminology pop-
ularized by the recent difference-in-differences literature (see Roth et al. (2023) for
an overview). With an always-taker-to-complier ratio of 3, the IV estimator assigns
a weight of 4 to τATE and -3 to the average effect of delayed parenthood for always-
takers, E[Yt(2) − Yt(0)|Ct = 0]. Difference-in-differences methods are inapplicable
here because parenthood timing may be selective.
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3.2.1 Control Outcome

To demonstrate how the relier average control outcome can be identified, I first express

it as a weighted average of childless outcomes among reliers with different willingness

to undergo ACPs, and then explain how each term in this expression is identified:

E[Yt(0)|Rt = 1] =
w∑

w=1

E[Yt(0)|Rt = 1,Wt = w] Pr(Wt = w|Rt = 1).

The average outcome among women who underwent exactly w ACPs and remained

childless identifies the average control outcome for reliers willing to undergo exactly

w ACPs:

E[Yt|At = w,Dt = 0] = E[Yt(0)|Wt = w,Rt = 1].

This holds because, first, control outcomes are realized among childless women. Sec-

ond, women who underwent exactly w ACPs and remained childless form an as-good-

as-random subsample of reliers willing to undergo exactly w ACPs. The latter follows

from two key observations. First, only reliers who are willing to undergo exactly w

ACPs can remain childless after undergoing exactly w unsuccessful ACPs, since non-

reliers would have children, and those willing to undergo more than w ACPs would

have done so. Second, conditional on being a relier willing to undergo exactly w

ACPs, remaining childless is effectively random, determined solely by whether any

ACP up to w succeeds, with each ACP outcome being as good as random.

The shares of different types can be identified following a similar argument. First,

women who experience at least w failed ACPs form a random subsample of those

willing to undergo at least w ACPs. Thus, the share of these women initiating a

subsequent ACP identifies the share willing to undergo at least w + 1 ACPs in this

group:

Pr(At ≥ w + 1 | At ≥ w,Zw = 0) = Pr(Wt ≥ w + 1 | Wt ≥ w).

Second, women who do not undergo an additional ACP after w failed ACPs form a

random subsample of those willing to undergo exactly w ACPs. Thus, the share of
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these women who remain childless identifies the share of women reliant on ACPs in

this group:

Pr(Dt = 0 | At = w,Zw = 0) = Pr(Rt = 1 | W = w).

Combining these conditional probabilities allows me to construct Pr(Wt = w,Rt = 1)

for all w, meaning that the shares of all types are identified.

When all women conceive solely through ACPs, making everyone a relier, the

average control outcome is identified. Combined with the average treated outcome,

this allows identification of τATE. However, if some women conceive naturally, τATE

cannot be identified without additional assumptions, as non-relier control outcomes

are unobservable. Furthermore, τATR also cannot be identified, since treated outcomes

are observed only for those whose first ACP succeeds, and the identity of reliers among

them is unknown. I next describe how I bound the relier average treated outcome to

bound τATR.

3.2.2 Treated Outcome

I bound the relier average treated outcome using the distribution of outcomes among

women whose first ACP succeeded. Since the success of the first procedure is as

good as random, this distribution reflects the treated outcomes of all women entering

ACPs. Combined with the relier share identified in the previous step, this allows me

to construct worst-case bounds for the relier average treated outcome by assuming

they either have the lowest or highest treated outcomes.

To illustrate the intuition, suppose there are 100 women whose first ACP suc-

ceeded, and the first step identifies that 80% of women are reliers. Then, by un-

confoundedness, there are approximately 80 reliers among the 100 women, and their

expected outcome is the same as the relier average treated outcome. While it is not

known which 80 out of the 100 women are the reliers, the upper bound for their aver-

age treated outcome can be constructed by selecting the 80 women with the highest

outcomes. The argument for the lower bound is symmetric.
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3.2.3 Narrowing Bounds with Covariates

When ACP success is as good as random conditional on pre-ACP covariates, these

covariates can help refine the bounds. For instance, suppose we identify that 80%

of women in both high- and low-education groups are reliers. The most conservative

starting point is to construct the lower bound by excluding the 20% of first-ACP moth-

ers with the highest outcomes, disregarding education. However, if all of these 20%

are high-educated, this selection procedure becomes inconsistent with the education-

conditional relier shares, as we know that some non-reliers are low-educated. Since

this was the most conservative starting point, any other selection can only produce

the same or a higher lower bound. The new bounds are instead constructed using the

lowest and highest outcomes within each education group.

3.2.4 Narrowing Bounds with Assumptions

The bounds can be narrowed further with additional assumptions on which women

whose first ACP succeeded are (or are not) reliers. For instance, it could be reasonable

to assume that women who had non-ACP children after their first ACP succeeded

would have also had at least one non-ACP child if all ACPs had failed, ensuring they

are not reliers. This assumption aligns with the economic idea that families are more

determined to have their first child than to have additional children.

To illustrate why this helps, suppose there are 100 women whose first ACP suc-

ceeded. Further suppose that in addition to identifying that 80% of the 100 women

are reliers, as before, 10 are observed to have an additional non-ACP child. The

assumption implies that these 10 women are not reliers and they can be excluded

before selecting the 80 potential reliers to construct the bounds. Selecting 80 women

with either the highest or lowest outcomes from a subset of 90 women can only result

in tighter bounds compared to selecting from a set of 100 women.

Formally, R+
t is an indicator for a woman’s reliance on ACPs for additional children

after becoming a mother through her first ACP. Specifically, R+
t takes the value 1

if, in the case that her first ACP succeeds, a woman would have only ACP children,

and 0 otherwise. I refer to women who rely on ACPs for all subsequent children as

subsequent reliers. D+
t is an indicator for having at least one non-ACP child, defined
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as: D+
t = ZAt(1 − R+

t ) + (1 − ZAt)(1 − Rt).
7 In words, a woman has at least one

non-ACP child either if an ACP succeeded and she is not a subsequent relier, or if all

ACPs failed and she is not a relier.8

Assumption 3 (Monotonicity). Pr(R+
t ≥ Rt) = 1.

The monotonicity assumption states that women who are not reliant on ACPs for

additional children are also not reliant on ACPs for their first child. This auxiliary

assumption concerns behavior and is arguably stronger than previous assumptions.

It does not imply a preference for multiple children over one or vice versa, nor does

it rule out sterility. It states only that couples who conceive a child naturally after

having an ACP child would have also done so if ACPs had failed. From a fertility

choice perspective, it excludes only couples who prefer more children over fewer but

would rather have none than just one or a few. Consequently, a sufficient condition

is that couples prefer having at least one child over none—a reasonable assumption

given that the sample consists of couples who chose to pursue assisted conception

while likely aware that they might be unable to have multiple children.

Nonetheless, given the uncertainty of conception, the assumption may be violated

if the success of the first ACP influences relationship stability or mental health—such

as preventing separation or reducing depression—thereby increasing effort to conceive

naturally and leading to non-ACP births that would not have occurred otherwise. I

relax the assumption to allow for such violations in Section 6.4 and provide empirical

support for both versions of the assumption afterward. Remaining theoretical results

assume monotonicity.9

3.3 Relier Average Treatment Effect

In this section, I formalize and combine ideas introduced in Section 3.2 to bound τATR.

Since the method is effectively cross-sectional, I simplify notation by omitting the time

7For brevity, I do not distinguish between reliance on ACPs for subsequent children
after becoming a mother via the first and subsequent ACPs; only former is relevant.

8It implies that women with at least one non-ACP child also have at least one
child (D ≥ D+), and if ACPs fail, having a child is equivalent to having a non-ACP
child (D = D+ | ZA = 0).

9Setting R+ = 1, D+ = 0 if Z1 = 1 is equivalent to the case without monotonicity.
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index t, with all unindexed variables and functions implicitly indexed by t. Before

stating the formal results, I introduce the conditional sequential unconfoundedness

assumption:

Assumption 4 (Conditional sequential unconfoundedness).

(Y (k), R+, R,W ) |= Zj | Xj for all j, k, and Xj ∈ X 1
j = {x ∈ Xj : 1{A≥j} = 1}.

Where Xj are covariates at the time of ACP j, with support Xj. To simplify notation,

they include an indicator for whether the woman has undergone at least j ACPs,

1{A≥j}. Covariates specific to ACP j are set to 0 if the woman does not undergo ACP

j.10 In words, the success of ACP j is independent of potential outcomes and type,

conditional on undergoing at least j ACPs and covariates at the time of ACP j. The

next assumption provides regularity conditions. Let ej(x) = Pr(Zj = 1 | Xj = x).11

Assumption 5 (Regularity).

1. 0 < e < ej(x) < e < 1 for all j and x ∈ X 1
j , for some fixed e and e.

2. Y has a probability density function for Z1 = 1, D+ = 0, and all x ∈ X1.

It contains two parts. First, the probability of ACP success conditional on undergoing

the procedure and covariates at the time differs from 0 and 1. Second, Y is a con-

tinuous random variable conditional on the first ACP succeeding, having only ACP

children, and any value of X1. In practice, adding a negligible amount of continuously

distributed noise to Y is sufficient to avoid ties in trimming without meaningful bias.

The bounding procedure begins with identifying several nuisance functions in-

volved in the trimming step. First, the covariate-conditional relier share is identified

using the weighted share of women without children among those whose ACPs failed:

r(x) = E
[
(1−D+)Πw

j=1(1− Zj)

Πw
j=1(1− ej(Xj))

∣∣∣∣X1 = x

]
.

Since ej(xj) takes values above zero only for women who undergo ACP j, larger

weights are given to women who underwent more ACPs. This accounts for the fact

10 For j > 1, Xj also includes covariates from previous ACPs.
11An ACP cannot succeed unless a woman initiates the procedure: given j, ej(x) =

0 for all x ∈ Xj \ X 1
j .
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that women willing to undergo more ACPs are less likely to not experience ACP suc-

cess, making them underrepresented in this group. Next, the covariate-conditional

share of subsequent reliers is identified from the share of women having only ACP chil-

dren among those whose first ACP succeeded r+(x) = E [1−D+ | Z1 = 1, X1 = x].

Under monotonicity, the covariate-conditional share of reliers among subsequent re-

liers is then p(x) = r(x)/r+(x).

The covariate-conditional quantile function of the treated outcome distribution

among subsequent reliers is identified from the outcome distribution of women whose

first ACP succeeded and who have only ACP children:

q(u, x) = inf
{
q : u ≤ Pr(Y ≤ q | X1 = x, Z1 = 1, D+ = 0)

}
.

Finally, q(p(x), x) and q(1−p(x), x) identify the covariate-conditional p(x)-th and 1−
p(x)-th quantiles of the treated outcome distribution among subsequent reliers. These

quantiles will be used to trim the tails of the outcome distribution and select reliers

in the scenarios where they have either the lowest or the highest treated outcomes.

The nuisance functions are combined with the data to construct the moments:

mL(G, η0) = Y (1−D+)1{Y <q(p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1

(1− Zj)

(1− ej(Xj))

mU(G, η0) = Y (1−D+)1{Y >q(1−p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1

(1− Zj)

(1− ej(Xj))
,

where G is a vector containing all observed variables and η0 contains the nuisance

functions:

η0(x1, . . . , xw) = {r+(x1), r(x1), q(p(x1), x1), q(1− p(x1), x1), e1(x1), . . . , ew(xw)}.

The first term in mL(G, η0) is used to bound the relier average treated outcome. It

assigns positive weights to women whose first ACP succeeded, who have only ACP

children, and whose outcomes fall below the covariate-conditional trimming threshold

q(p(x), x). The second term, used to identify the relier average control outcome,

assigns positive weights to outcomes of childless women. Larger weights are given

to women who underwent more ACPs to account for the fact that reliers willing
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to undergo more ACPs are less likely to not experience ACP success, making them

underrepresented in this group. mU(G, η0) mirrors this for the scenario where reliers

have the highest treated outcomes. The moments are then scaled by the relier share.

Theorem. Under Assumptions 2, 3, 4, and 5, sharp lower and upper bounds on τATR

are given by θL = E[mL(G, η0)]/E[r(X1)] and θU = E[mU(G, η0)]/E[r(X1)].

3.4 Relation to Methodological Literature

My method integrates ideas from two branches of methodological literature. The first

step, addressing selection via subsequent ACPs, draws on the literature for evaluating

time-varying treatments (see Hernán & Robins (2020) for an overview). These meth-

ods, designed for settings with quasi-random assignment to sequential treatments,

are most suitable for controlled experiments. In my setting, treatment assignment

corresponds to conceiving via ACPs, but the possibility of non-ACP motherhood, or

treatment without assignment, makes these methods unsuitable.

Even without selective treatment, a key distinction lies in the treatment assign-

ment mechanism. In my model, the decision to initiate each subsequent ACP may

be selective, with quasi-random treatment assignment occurring only upon initiation.

Women who do not initiate an additional ACP cannot be assigned treatment. This

differs from settings where all individuals have a non-zero probability of assignment

to different regimes. In this respect, my model is related to Van den Berg & Vikström

(2022), where individuals have a positive likelihood of being assigned treatment each

period until they receive it or permanently exit eligibility. In my setting, however,

treatment is not assigned at specific moments but depends on when and how often

individuals choose to pursue it (e.g., undergo ACPs). As a result, selection cannot

be captured by a duration variable but is determined by the number of procedures,

their timing, and covariates at the time of each procedure.

The second step of my approach, which addresses selection via non-ACP means,

is methodologically related to the Zhang & Rubin (2003) and Lee (2009) procedure

(henceforth, ZRL) for handling unobserved outcomes in quasi-experimental settings.

While dynamic effects are conceptually distinct from unobserved outcomes, the ZRL
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approach can be adapted to bound τLATE.
12

The key distinction from the adapted ZRL approach is that my method leverages

women’s entire ACP histories rather than just the first procedure to bound effects

for reliers rather than compliers. This is advantageous not only because reliers are

a more general group, but also because it guarantees narrower bounds. In appli-

cation, I demonstrate that the ZRL bounds are several times wider, making them

uninformative.13

3.5 Estimation

The bounds on τATR can be estimated using sample averages of mL and mU after

plugging in an estimate of the nuisance parameter η0. With a few discrete covariates,

asymptotic normality can be demonstrated building on Lee (2009). However, incor-

porating continuous covariates may be crucial for tighter bounds, requiring nonpara-

metric estimation of the nuisance parameter, which complicates inference. To justify

inference, I build on the estimation approach for the ZRL procedure introduced by

Semenova (2023), leveraging orthogonalization and sample splitting. I modify it by

incorporating the first step of my identification approach and present the new orthog-

onal moments and estimator in Appendix A2.14 In Appendix A3, I discuss alternative

estimation methods, all yielding results consistent with my main estimates.

12Treat outcomes of mothers whose first ACP fails as unobserved.
13Another distinction of my approach is the use of the monotonicity assumption.

ZRL assumes treatment has a non-negative effect on being observed, I use non-ACP
conceptions of additional children as an auxiliary variable to help identify non-reliers.

14I use 3-fold cross-fitting, estimating propensity scores via logistic regressions with
quadratic terms for each partner’s age at the procedure, interacted with procedure
type and education dummies, using women initiating the respective ACP. I use the
first ten ACPs, treating conceptions via other ACPs as natural. Following Heiler
(2024), I estimate remaining nuisance functions using Generalized Random Forests
(Athey et al., 2019), incorporating all propensity score covariates up to the current
ACP, along with pre-ACP income and work hours for both partners. Confidence
intervals for the bounds follow Stoye (2020).
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4 Institutions, Procedures, and Data

In this section, I first describe Dutch family policies and the labor market context.

Then, I discuss IVF and intrauterine insemination, and the differences between them.

Afterward, I overview the data, provide empirical support for the sequential uncon-

foundedness assumption, and compare the ACP sample to the general population.

4.1 Family Policies in the Netherlands

Dutch women are entitled to 4 to 6 weeks of pregnancy leave before the due date and

at least 10 weeks of maternity leave after birth, totaling at least 16 weeks.15 During

this period, they receive full wage replacement from the unemployment insurance

agency (up to a daily limit). Fathers receive one week of fully paid leave within the

first four weeks, covered by the employer.16

Children can enroll in private daycare from three months old. In 2022, 72% of

children under two attended formal child care, averaging 20 hours per week (OECD,

2023a). After turning four and starting elementary school, they become eligible for

out-of-school care. In 2023, families using child care paid an average of 8,950 euros,

with 64% reimbursed, translating to a net cost equivalent to 10% of median disposable

household income.17

The Netherlands has average family policies compared to other OECD countries.

Paternity and maternity leave durations are slightly below the OECD averages of 2.5

and 21 weeks, respectively (OECD, 2023c). While formal child care enrollment for

children under two is the highest among OECD countries, average time spent in care

is the lowest (OECD, 2023a). After age four, enrollment rates and out-of-school care

hours align with OECD averages (OECD, 2022).

While employment rates for mothers, fathers, and non-parents in the Netherlands

15For multiple births, women receive 20 weeks of leave; this has negligible impact
on the results.

16A 2020 reform granted fathers up to six weeks of leave; most births in the data
occurred earlier.

17www.cbs.nl/nl-nl/nieuws/2024/30/ouders-betaalden-gemiddeld-3-210

-euro-aan-kinderopvang-in-2023, longreads.cbs.nl/materiele-welvaart-in

-nederland-2024/inkomen-van-huishoudens/.
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exceed their respective OECD averages, part-time work is far more common, making

average hours worked comparable to the OECD average (OECD, 2023b). In 2021,

the maternal employment rate was 80%, compared to the OECD average of 71%.

However, in 2023, 52% of women and 18% of men worked part-time (less than 30

hours per week), more than twice the respective OECD averages (OECD, 2023d).

Among two-parent families, only 14% had both parents working full-time, 52% had a

full-time working father and a part-time working mother, and 12% had both parents

working part-time.18

4.2 Assisted Conception Procedures

I use two types of ACPs: IVF, previously used to study the career impact of parent-

hood in Denmark and Sweden (Lundborg et al., 2017; Bensnes et al., 2023; Gallen et

al., 2023; Lundborg et al., 2024), and intrauterine insemination (IUI), which has not

been used for this purpose. Both procedures may begin with cycle tracking and hor-

monal stimulation to enhance egg production. IVF is a surgical procedure where eggs

are retrieved through the vaginal wall, fertilized in the lab, and transferred as embryos

into the uterus. It is relatively invasive, performed under sedation or anesthesia, and

has a success rate of about 25% per embryo transfer. IUI involves injecting sperm

directly into the uterus via a catheter. With a lower success rate of about 10%, IUI

is significantly less invasive—lasting about five minutes and generally painless—and

is the first-line infertility treatment in most countries. In the Netherlands, couples

without a specific infertility diagnosis must typically undergo six IUI cycles before

attempting IVF. Compulsory health insurance covers unlimited IUI and up to three

IVF procedures. In 2022, each additional IVF cycle costs 4,000 euros, but since

multiple embryos can be frozen per cycle, subsequent transfers may cost 1,000 or less.

4.3 Data

I use administrative data from Statistics Netherlands, covering all residents. ACP

data span 2012-2017 and come from the Diagnosis-Treatment Combination system,

18www.cbs.nl/en-gb/news/2024/10/fewer-and-fewer-families-in-which

-only-the-father-works
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which Dutch hospitals are required to report to. My main variables are the procedure

type—IVF or IUI—and the date of sperm or embryo insertion. ACP success is defined

as having a child born within 10 months of insertion with no subsequent insertions,

a definition validated against medical records by Lundborg et al. (2017).

Labor market data span 2011–2023, with annual work hours and gross labor in-

come derived from tax records. Work hours include maternity leave, and income

includes maternity pay. While leave pay accurately reflects women’s financial situa-

tion, incorporating leave duration complicates the interpretation of work hours. To

address this, I define maximum-leave-adjusted hours, scaling reported hours during

each childbirth year by 36/52 to account for up to 16 weeks of leave. In my main

analyses, I estimate upper bounds using reported hours and lower bounds using ad-

justed hours, ensuring that the effects on actual work hours fall within these bounds.

Since existing methods do not naturally accommodate such adjustments, I use leave-

adjusted hours in secondary analyses. The choice of measure only affects results in

the first year of motherhood and does not impact the method comparisons or bias

estimates.

I use several demographic variables, including an indicator for completing higher

education, number of children, birth dates, and cohabitation status. My main sample

consists of cohabiting opposite-sex couples undergoing intrauterine insemination for

their first child. To ensure the first observed ACP is their actual first, I follow Lund-

borg et al. (2017) and exclude individuals whose first observed procedure occurred in

the first data year, as they likely had prior ACPs. I also exclude those whose first

ACP occurred in the last data year to prevent misattributing births from unobserved

ACPs in the following year to failed ACPs. These restrictions have negligible impact

on my results. My main sample includes 15,523 couples. For comparison with the

general population, I use 376,157 women who were cohabiting with a male partner

when they conceived their first child between 2013 and 2017, without prior ACPs.

All analyses use the full samples, regardless of employment status.

Table 1 compares average characteristics of couples whose first ACP succeeded

(column 1) and those whose first ACP failed (column 2). Labor market outcomes

are measured in the year preceding each woman’s first ACP. The two groups had

similar average annual income, but women whose first ACP succeeded worked 30
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Table 1: First ACP Outcomes and Descriptives

Success Fail Dif. Cond. dif. Rep. Suc. vs rep.
(1) (2) (1)-(2) (1)-(2) cond. (5) (1)-(5)

Work (W) 0.882 0.863 0.019 0.008 0.801 0.080
[0.323] [0.344] (0.009) (0.009) [0.001] (0.010)

Work (P) 0.884 0.865 0.019 0.013 0.783 0.101
[0.320] [0.342] (0.009) (0.009) [0.001] (0.010)

Hours (W) 1240.315 1207.860 32.455 18.702 1076.204 164.111
[604.666] [635.194] (16.183) (16.560) [1.135] (16.856)

Hours (P) 1474.530 1438.590 35.940 18.579 1250.948 223.582
[658.231] [695.692] (17.713) (17.870) [1.294] (19.211)

Income 1000s e (W) 28.065 27.418 0.647 0.745 21.362 6.703
[19.559] [20.219] (0.516) (0.546) [0.030] (0.444)

Income 1000s e (P) 37.205 36.952 0.252 0.364 28.107 9.098
[26.482] [29.452] (0.746) (0.730) [0.047] (0.704)

Bachelor deg. (W) 0.480 0.451 0.029 0.411 0.069
[0.500] [0.498] (0.013) [0.001] (0.012)

Bachelor deg. (P) 0.394 0.381 0.013 0.345 0.049
[0.489] [0.486] (0.012) [0.001] (0.012)

Age (W) 31.638 32.388 -0.750 28.713 2.926
[4.015] [4.383] (0.111) [0.008] (0.113)

Age (P) 34.675 35.461 -0.786 31.686 2.989
[5.513] [5.996] (0.152) [0.009] (0.139)

Observations 1,714 13,809 376,152

Joint p-val. 0.000 0.928 0.000

Note: Labor market outcomes measured in the year preceding first ACP. (W) - woman, (P) -
partner, cond. dif. - conditional difference, rep. - representative, suc. - success. Last column uses
inverse probability weights for the first ACP that follow the main specification. Standard deviations
in brackets. Standard errors in parentheses.

more hours per year, were nearly 2 percentage points more likely to be employed, and

were slightly more educated. A similar education gradient in IVF success has been

documented in Denmark (Groes et al., 2024). Partner characteristics follow a similar

pattern. Notably, both women and their partners whose first ACP succeeded were

nearly nine months younger, consistent with age being the key factor in ACP success.

Following Lundborg et al. (2024), Table 1 further reports differences between the

two groups after adjusting for education and age, making remaining gaps negligible.

Excluding education has no effect. Appendix A4 presents equivalent results for subse-

quent ACPs. Since women have limited control over ACP outcomes, the main threat

to conditional sequential unconfoundedness is ACP success depending on health fac-
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tors that also influence labor market outcomes. As such factors likely also affect

pre-ACP outcomes, balance on these outcomes provides relative strong support for

the assumption. Remaining analyses accounts for differences in success rate by age

at the time of each procedure, education, and procedure type.

Table 1 also compares the main sample to the representative sample of mothers,

weighted to match the birth year distribution of first children among those whose first

ACP succeeded (column 5). Before motherhood, women in the representative sample

were less likely to work, had lower income, worked fewer hours, and were less educated.

Differences for fathers follow a similar pattern. Notably, the relative gender gaps in

work hours and income are remarkably similar between the two samples, which is

crucial for the generalizability of my estimates. The largest difference between samples

is age, with first ACP mothers and fathers conceiving three years later on average.

This is partly mechanical, as Dutch couples, like those in most countries, are required

to try conceiving naturally for at least a year before seeking medical assistance, and

intrauterine insemination is not initiated immediately. After parenthood, both groups

have similar completed fertility (1.8 children on average). Women whose first ACP

succeeded are more likely to have twins (7% vs 1.5% in the representative sample),

though multiple births remain uncommon in both groups.

Another reason sequential unconfoundedness may fail is that women pursue addi-

tional ACPs based on information suggesting a higher likelihood of success, introduc-

ing a correlation between the willingness to undergo ACPs and procedure outcomes.

A similar concern applies to the IV approach, which assumes complier status is inde-

pendent of the first ACP success, though compliance may depend on the success of

subsequent procedures. To investigate this, I examine how success rates vary across

procedures. If women willing to pursue more ACPs are more likely to succeed, we

might expect higher success rates at later procedures. Since success likelihood declines

with age, potentially obscuring any pattern, I fix age at the first-procedure average.

Figure 1 shows that intrauterine insemination success rates are similar at the first

procedure, which includes the full sample, and later procedures, which only include

women willing to undergo additional procedures. This suggests a limited relationship

between the willingness to undergo ACPs and success likelihood.

Women whose first ACP fails undergo an average of 4.1 additional procedures.
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Figure 1: Estimated Success Probabilities

The estimated average willingness to undergo ACPs in case of failure, W , is 7.3.

Three years after the first ACP, the estimated relier share is 0.8, decreasing to 0.45 in

year seven. For compliers, these shares are 0.4 and 0.25, respectively. The estimated

correlation between reliance and willingness is close to zero (although it is not required

for the bounding approach). Appendix A4 presents further details.

5 Results

Figure 2 presents effects on women’s annual work hours and income. In the conception

year, bounds indicate a reduction in work hours of 10 to 130 hours, or 1% to 11%

relative to the point-identified relier average control outcome. The impact on income

is negligible. Wider bounds for hours in the second year reflect uncertainty due to

potential maternity leave. From year 3 to 7, bounds for work hours remain stable,

indicating reductions of 90 to 290 hours, or 8% to 26%. Bounds for income widen

slightly over time, with reductions of 1,500 to 10,800 euros, or 5% to 34%, in year 7.

Figure 3 presents effects on men’s outcomes. The bounds are similar in width to

those for women but are centered near zero. Seven years into parenthood, the bounds

rule reductions in work hours over 4% and reductions in income over 16%.
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Figure 2: Effects on Women

Figure 4 plots the share of gender inequality caused by parenthood—that is, the

effects on the gaps in outcomes between men and women relative to the gaps in their

average treated outcomes.19 Between years 3 and 7, parenthood caused 26–60% of

gender inequality in annual work hours and up to 50% in annual income, with upper

bounds stable over this period. Aggregating bounds across periods yields non-sharp

bounds for cumulative effects, as per-period bounds ignore within-woman and within-

couple outcome relationships over time. Using cumulative hours and income over the

seven years as outcomes, I find that parenthood caused 36–54% of inequality in work

hours and 5–46% of inequality in income during this period.

I present extensions and sensitivity analyses in Appendix A3. They include using

an alternative monotonicity assumption following Semenova (2023), applying a GMM

estimator that does not rely on orthogonalization and sample splitting, adjusting for

the age difference between partners when estimating the share of gender inequality

caused by parenthood, and ensuring estimates in each period cover the same sub-

population. All results remain similar. Appendix A3 also presents bounds that do

19Using differences between male and female outcomes ensures sharpness (Semen-
ova, 2023). The ratios are calculated as 1 − a/b, where a is the identified control
outcome and b is the lower or upper bound for the treated outcome, estimated using
orthogonal moments. Inference based on Delta method.
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Figure 3: Effects on Men
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Figure 4: Share of Gender Inequality Caused by Parenthood
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Figure 5: Comparison with ZRL Bounds for Effects on Women

not use the monotonicity assumption. They are similar to the baseline bounds in the

first three years but widen thereafter. Under the most extreme selection, the share

of gender inequality caused by parenthood over the sample period increases to 64%

for hours and 70% for income.

Before turning to existing methods and generalizability, I compare my bounds

with those relying solely on women’s first ACP, equivalent to the Zhang & Rubin

(2003) and Lee (2009) bounds. Figure 5 presents the effects on women’s labor market

outcomes.20 The ZRL bounds are considerably wider, unable to rule out large positive

or negative effects on women’s income and work hours in both the short and medium

run. Even leveraging the new monotonicity assumption, the bounds in year 7 are 5

and 3.5 times wider than mine for hours and income, respectively.

6 Existing Methods and Generalizability

Two reduced-form approaches are central to the debate on the career consequences

of parenthood: the IV approach, described in Section 3.1, and the event study (ES)

approach, which compares women who are one year away from pregnancy with those

20Estimation uses the baseline approach, ignoring all ACPs after the first.
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who already have children, controlling for age. Since Danish ES estimates are nearly

identical for ACP and general samples but differ substantially from the IV estimates

(Lundborg et al., 2024), understanding why these methods diverge is crucial for as-

sessing the generalizability of ACP-based findings.

Section 6.1 discusses why the two methods may yield different results, presents

a baseline comparison using Dutch data, and assesses if differences in birth timing

can reconcile the discrepancies. Sections 6.2 and 6.3 evaluate the extent of dynamic

effects and selection, respectively, as well as their explanatory power. Finally, Section

6.4 addresses concerns related to mental health and relationship breakdowns.

6.1 Baseline Comparison and Birth Timing

Even with the same sample, the bias in the ES and IV estimators cannot be assessed

by comparing their estimates to the bounds for several reasons. First, they measure

effects for different moments of becoming a parent: the IV and the bounds consider

the effect of conceiving at the first ACP, while ES also includes conceptions that follow

an initial ACP failure. Second, they target different subpopulations: the IV focuses

on compliers, the bounds cover reliers, while ES also includes non-reliers. Third,

they consider different childlessness scenarios: while all methods assume no anticipa-

tion, the IV and the bounds use women trying but failing to conceive, whereas ES

may additionally include those who have not yet attempted conception, introducing

potential differences in mental health and relationships.

Figure 6 compares baseline estimates from different methods.21 The ES estimates

using the ACP sample suggest a large negative impact on women’s labor market

outcomes, while IV estimates indicate a smaller effect. The ES estimates from the

representative sample closely match those from the ACP sample, consistent with

findings from Denmark. Compared to the bounds, the ES estimates suggest a higher

cost of motherhood, while IV estimates generally fall within the bounds but suggest

larger reductions in hours and income in the fourth year. In the medium run, the

bounds include substantially larger negative effects than those suggested by the IV

21Hours refer to leave-adjusted work hours. Implementation details for IV and ES
are in Appendix A5, they follow Lundborg et al. (2017) and Kleven et al. (2019).

28



−800

−700

−600

−500

−400

−300

−200

−100

0

100

1 2 3 4 5 6 7
Time (years)

Hours

−17500

−15000

−12500

−10000

−7500

−5000

−2500

0

2500

5000

1 2 3 4 5 6 7
Time (years)

Income

Bounds IV ES (ACP) ES (representative) ES (ACP success)

Figure 6: Comparison of Different Methods

estimates.22

Figure 6 also presents ES estimates using only women whose first ACP succeeded,

which trivially aligns the targeted parenthood moment between the IV, ES, and

the bounds to the first ACP. The results remain nearly identical to the baseline ES

estimates, suggesting that differences in the moment of becoming a parent do not

explain the discrepancy.

6.2 Instrumental Variable and Delayed Parenthood

The IV estimator may be biased when the effect of conceiving at the first ACP differs

from that of conceiving later. To evaluate the extent of dynamic effects, I bound

the effect of conceiving after ACPs fail relative to conceiving at the first ACP for

non-reliers, who are a subset of always-takers driving the potential bias of the IV

estimator. This impact is not only relevant for assessing bias but also interesting in

its own right, as it sheds light on the career consequences of delaying parenthood.

22While my method addresses the bias, it does so at the expense of point identifica-
tion—a disadvantage to researchers willing to impose stronger assumptions regarding
selection or dynamic effects. However, my method compensates with enhanced pre-
cision. I discuss this in Appendix A6, where I demonstrate that the 95% confidence
intervals for my bounds closely match those for the IV.
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Figure 7: Effects of Delaying Motherhood

This bounding procedure mirrors that for τATR.
23

Figure 7 presents the results. The last column shows the effects on parenthood

timing: for women who would conceive within four years regardless of ACP failure,

failure delays fertility by an average of 2.3 years, while for those conceiving within

seven years, the delay averages 3.1 years. The first two columns report effects on

labor market outcomes. Four years after the first ACP, delaying parenthood slightly

increases women’s work hours. By year seven, the bounds for both income and hours

are narrow and centered near zero.

The positive short run effect of delaying parenthood is unexpected. A younger

first child typically increases care demands. Thus, IV estimates are often thought to

understate the career cost of motherhood (Lundborg et al., 2024), but my findings

suggest otherwise. A possible explanation lies in total fertility, as earlier mothers tend

23First, I identify the average later-treated outcome for non-reliers with a specific
willingness to undergo ACP from women who have their first child without ACP after
undergoing a specific number of ACPs: E[Yt | At = w,ZA = 0, Dt = 1] = E[Yt(R∗) |
Wt = w,Rt = 0], where Yt(R

∗) is the potential outcome for non-reliers in period
t in case they have a child after all ACPs fail. Then, I bound the average treated
non-relier outcome by trimming the outcome distribution among women whose first
ACP succeeded using the identified non-relier share. Monotonicity is leveraged by
always including women who have non-ACP children after the first ACP succeeds.
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to have more children, meaning that delayed motherhood may reduce care needs and

improve labor market outcomes. The data support this explanation—women whose

first ACP succeeds have, on average, 0.2 more children than those who conceive after

failure. Although small, the positive short-run effect of delaying parenthood is enough

to reconcile the gap between the IV estimates and the bounds in Section 6.1.

While the bounds suggest at most a modest medium-run effect of delaying moth-

erhood, the large always-taker share—reaching 75%—may introduce substantial bias

in the IV estimator. For example, the IV estimates may understate the career impact

of motherhood on work hours and income in year seven by up to 70%. This aligns

with the baseline comparisons between the bounds and IV estimates in Section 6.1.

When the effects of parenthood are static, τATR is point-identified.24 This provides

a basis for testing homogeneity assumptions leveraged in methods that use short-run

IV estimates to address long-run bias (Bensnes et al., 2023; Gallen et al., 2023). If

heterogeneity is limited, short-run estimates of τATR or τLATE should yield similar

bias-corrected estimates in the long run. Appendix A7 provides the formal argument

and empirical results, revealing significant violations of the homogeneity assumption.

6.3 Event Study and Selective Fertility Timing

Next, I quantify the extent of selective fertility among reliers. For brevity, I focus on

the intuition and present the formal argument in Appendix A8. The ES approach

compares women who have been mothers for t years to those one year away from

pregnancy, controlling for age. This captures two factors: the effect of motherhood

and differences in career trajectories between those who already have children and

those who will later, in the absence of children—selection. If fertility timing is random,

selection plays no role, and the comparison isolates the effect of parenthood.

To assess selection, I start with childless reliers career trajectories identified using

the baseline approach. Using the timing of women’s first ACP as a proxy for fertility

24Under static effects, E[Yt(R∗) | Rt = 0] = E[Yt(1) | Rt = 0], and since E[Yt(R∗) |
Rt = 0] is identified similarly to E[Yt(0) | Rt = 1], the relier average treated outcome
can be backed out: E[Yt(1) | Rt = 1] = E[Yt(1)] − Pr(Rt = 0)E[Yt(R∗) | Rt =
0]/Pr(Rt = 1). Then, it can be compared to E[Yt(0) | Rt = 0], identified using the
baseline procedure.
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Figure 8: Career Progression Differences by Parenthood Timing in the Absence of Children

decisions, I compare labor market outcomes in the absence of children between sim-

ilarly aged reliers who planned to have children in the past and those who plan to

have children in a year, as in the ES approach. This captures how relier labor market

outcomes vary by parenthood timing in the absence of children, which measures the

extent of selection in the ES context.25

Figure 8 presents separate estimates for men and women. A negative estimate in

year tmeans that women who became mothers t years ago would have had worse labor

market outcomes than those about to become mothers, even without children. While

initial differences are minor, they grow over time, indicating substantial negative

selection among early mothers. For men, selection is reversed: early fathers show

better career progression than later fathers, even without children. This positive

association between fatherhood and labor market outcomes aligns with evidence of

a “fatherhood premium” (Lundberg & Rose, 2000), observed globally and in the

Netherlands (Kleven et al., 2024).

The main results in Figure 9 show the extent to which gender inequality among

25The implementation involves using a standard event study specification (Kleven
et al., 2019), but applied to childless women in the ACP sample, where the event is
their first ACP. Women who underwent more ACPs are weighted higher to correct
for the underrepresentation of reliers with greater willingness to undergo ACPs.
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Figure 9: Share of Gender Inequality Explained by Effects of Parenthood and Selection

reliers is jointly explained by the causal effect of parenthood (from Figure 2) and

selective fertility timing (from Figure 8). By year 7, these factors account for 70% to

85% of work-hour inequality and 50% to 80% of income inequality.26

Figure 9 also presents ES estimates for the share of gender inequality caused by

parenthood from the representative sample, which closely follow the bounds. This

reconciles conflicting findings on the career impact of parenthood between the ACP

sample, based on a procedure that accounts for selection, and estimates from the

general population, based on a procedure that does not. It supports extrapolating

ACP-based estimates to the general population, suggesting that at least 34% of gender

inequality in work hours and 42% of inequality in income associated with parenthood

arise from selective fertility timing rather than the causal effect of parenthood.

In my model, these results imply that selective fertility biases the ES estimator.

However, my model does not distinguish between failing to conceive and choosing

not to have children. These scenarios may differ, as conception failure, especially via

ACPs, could affect mental health and relationship stability, worsening labor market

outcomes. If substantial, these effects could explain the gap between the bounds or the

IV estimates, where the counterfactual is failing to conceive, and the ES estimates,

26The share increases further after accounting for age differences between partners.
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where the counterfactual may involve not having attempted yet. This difference,

rather than bias from selective fertility, may be what the selection ES estimates

capture. I address this in the next section.

6.4 Mental Health and Relationship Stability

Women who remain childless after ACP failure may experience negative mental health

outcomes and/or relationship breakdowns, which could also affect labor market out-

comes. This is important for two reasons. First, it may explain differences between

the ES estimates and the IV estimates or the bounds, even without selection. Second,

it may undermine the monotonicity assumption used to narrow the bounds. I first

discuss the two concerns and then introduce a procedure to address them simultane-

ously.

The extent to which mental health issues and relationship breakdowns following

ACP failure affect the interpretation and comparison of different methods depends

on the counterfactual of interest. From an economic perspective, the most relevant

counterfactual for parenthood is arguably the scenario in which couples want children

but choose not to have them.

If mental health issues and relationship breakdowns stem from unmet fertility

goals, they are not a concern for the IV and the bounds, as these factors act as mech-

anisms through which parenthood influences labor market outcomes. Meanwhile,

ES estimates, which compare mothers to women who may not yet want children,

could miss these effects, leading to biased estimates relative to the counterfactual of

interest.27

By contrast, if these issues arise from failed conceptions or ACP side effects rather

than the absence of children, they pose a concern for the IV and the bounds. Cou-

ples would not have experienced these issues had they chosen not to undergo ACPs,

making the ES comparison group—women who have not yet undergone these proce-

dures—more relevant. This concern has been raised in studies using IVF due to its

invasive nature (Bögl et al., 2024). While focusing on IUI, a less invasive procedure,

27Nonetheless, extrapolation to non-ACP families remains a concern, as this impact
may be stronger in ACP families due to their high desire for children. Additionally,
breakups complicate the interpretation of within-couple inequality measures.
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mitigates these concerns, they remain only partially addressed, as about one-third of

women whose first IUI fails eventually undergo IVF.

Finally, mental health side effects and relationship breakdowns may threaten the

monotonicity assumption. Improved mental health and stability after a successful

conception may increase natural conception attempts, leading to non-ACP births

that would not have occurred if ACPs had failed.

Before formally addressing these concerns, it is worth noting that the empirical

relevance of mental health side effects may be limited. Lundborg et al. (2024) use

conservative back-of-the-envelope calculations, drawing on research on health shocks

and medical evidence on ACP side effects, and conclude that such effects, even if

sizable in relative terms, are unlikely to meaningfully influence women’s career tra-

jectories in absolute terms. Consistent with this, the estimated effect of ACP failure

on antidepressant uptake (Appendix A9) is precise and indistinguishable from zero.28

To address concerns about mental health and relationship breakdowns formally, I

adapt my approach to bound the effects for reliers who, in the event of ACP failure,

would remain with their partners and avoid severe mental health issues, proxied by

the onset of antidepressant use. These bounds, mechanically wider than baseline,

include the effect of parenthood specifically for women who would not face severe

consequences of failing to conceive. If they remain comparable to baseline bounds, this

suggests that mental health and relationship breakdowns following failed conception

have limited impact on the estimates.

Formally, let St = 1 if, in period t, in the scenario where ACPs fail, a woman would

not uptake antidepressants and would remain cohabiting with her partner from the

time of the first ACP; otherwise, St = 0. I refer to this group as resilient (St = 1). I

bound the average treatment effect for resilient reliers E[τ(t) | Rt = 1, St = 1]. The

procedure accommodates a relaxed monotonicity assumption:

Assumption 6 (Partial monotonicity). Pr(R+
t ≥ Rt | St = 1) = 1.

It states that monotonicity holds for resilient women, allowing for monotonicity vi-

olations among women who uptake antidepressants or separate from their partner

28This is only suggestive: the counterfactual is having children instead of not un-
dergoing ACPs.
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following ACP failure. I discuss empirical support for the original and partial mono-

tonicity assumptions in Appendix A10. Specifically, I demonstrate that the estimated

subsequent relier share is at least as large as the relier share, as implied by mono-

tonicity. The formal identification result for the resilient relier bounds amounts to

treating childless women who uptake antidepressants or separate from their original

partner as having children, or being non-reliers.29

Figure 10 presents the results. In the first few years, the bounds are similar to

those from the baseline approach but widen in later years.30 Nonetheless, although

this procedure for addressing mental health and relationship side effects is conserva-

tive, its impact on the results is minimal: even in the most extreme scenario, the share

of gender inequality in work hours and income attributed to parenthood increases by

no more than 10 percentage points.31

The key takeaway from these results is that severe mental health issues and re-

lationship breakdowns, regardless of their source, do no explain the differences in

estimates across methods. Since differences in fertility timing also fail to account for

the discrepancies, these findings suggest that bias from dynamic effects and selective

fertility is the key driver of differences between the IV and ES estimates, and the

bounds. Since ES estimates are nearly identical for ACP and representative samples,

these results support the generalizability of my estimates to the general population.

Moreover, as these results indicate that my estimates are not driven by families fac-

ing severe consequences from unsuccessful conception, they support generalizing to

families with a weaker desire for children, where such effects may be less pronounced.

29Setting D+ to 1 when a woman has no children but either takes antidepressants
or separates from her partner, the proof follows the same steps as for the theorem.

30Until year four, over 90% of reliers are resilient, declining to 85% by year seven.
31The procedure I use to address mental health and relationship stability concerns is

conservative for two reasons. First, it excludes from the comparison women who would
experience poor mental health or relationship breakdowns regardless of fertility or
attempts to conceive. This makes the bounds wider than if such women were included.
Second, it tackles both mental health and relationship breakdowns simultaneously.
The bounds presented in Appendix A10, which address mental health separately, are
even closer to the baseline estimates.
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Figure 10: Effects on Resilient Women

7 Conclusion

Parenthood explains much of the gender inequality in Western labor markets (Kleven

et al., 2024), but identifying its causal effects remains challenging. This paper intro-

duces a method that leverages assisted conception procedures to bound the effects of

parenthood while accounting for selective fertility timing and dynamic effects. The

procedure can also be applied to other quasi-experimental settings where individu-

als are assigned to treatment or control but may transition between states through

repeated assignments or entirely selective pathways.

Using data from the Netherlands, I find that parenthood persistently reduces

women’s yearly work hours by 10%-25% and income by 9%–29%. However, at least

half of the within-couple gender inequality in these outcomes after childbirth is not

caused by parenthood. I also provide evidence that event study estimates may over-

state the impact due to selective fertility timing, and IV estimates may understate

it due to dynamic effects. While event study and IV estimates may differ for sev-

eral reasons, some limiting the generalizability of estimates using assisted conception

success, I show that this bias is key to reconciling the conflicting results, with other

factors playing a minor role. These findings support generalizing my results from the

assisted conception sample to the broader population.
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My results have implications for understanding gender inequality in the labor

market, identifying potential remedies, and guiding future research. While leading

narratives either attribute nearly all gender inequality to parenthood or suggest it has

little impact, my findings offer a more nuanced perspective: parenthood has substan-

tial effects but is not the sole driver of gender inequality. From a research perspective,

this underscores the importance of considering additional factors contributing to gen-

der inequality. From a policy perspective, my results help explain why family-friendly

policies may have limited direct effects on gender inequality. However, such policies

could still reduce inequality by shaping behavior in anticipation of parenthood, which

is not captured by the methods considered in this paper.
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A1 Proof of Theorem

Corollary. Under Assumption 4:

(Y (1), Y (0), R+, R,W,Z1, . . . , Zj−1, X1, . . . , Xj−1) |= Zj|Xj for all j > 1.

Proof of Corollary. Xj includes 1{A≥j}, and when A < j, we have Zj = 0, which

covers the cases when Xj ∈ Xj \X 1
j . The remainder follows from Assumption 4, since

given Xj ∈ Xj, 1{A≥j}, Z1, . . . , Zj−1, and X1, . . . , Xj−1 are known.
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Lemma. For any for l s.t. 1 ≤ l ≤ w and any measurable function g(Ml), where

Ml = (Y (1), Y (0), R+, R,W,Z1, . . . , Zl, X1, . . . , Xl), under Assumptions 4 and 5:

E
[
g(Ml)Π

w
j=l+1

(1−Zj)

(1−ej(Xj))

∣∣∣Xl

]
= E [g(Ml)|Xl].

Proof of Lemma. Assumption 5 ensures that for any j, 1− ej(xj) > 0 for all xj ∈ Xj.

Then, w.l.o.g. for some l s.t. l < w:

E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
= E

[
E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xw

]∣∣∣∣Xl

]
(1)

= E
[
g(Ml)Π

w−1
j=l+1

(1− Zj)

(1− ej(Xj))
E
[

1− Zw

1− ew(Xw)

∣∣∣∣Xw

]∣∣∣∣Xl

]
(2)

= E
[
g(Ml)Π

w−1
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
(3)

= E [g(Ml)|Xl] , (4)

where (1) holds by law of iterated expectations and because Xj includes Xl for j ≥ l,

(2) holds by the Corollary, (3) holds because: E
[

1−Zw

1−ew(Xw)

∣∣∣Xw

]
= 1, and where (4)

follows from steps similar to (1) through (3) for Xj for j s.t. l < j < w.

Proof of theorem. I demonstrate the result for the upper bound, the re-

sult for the lower bound is symmetric. First, I demonstrate that

E
[
Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

]
/E[r(X1)] = E[Y (0)|R = 1]. Using that D+ = D|ZA =

0, 1−D = R|ZA = 0, and Y = Y (0)|D = 0 (by Assumption 2):

E
[
Y (1−D+)Πw

j=1

(1− Zj)

(1− ej(Xj))

]
= E

[
E
[
Y (0)RΠw

j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣X1

]]
(5)

= E [E [Y (0)R(1− Z1)/(1− e1(X1))|X1]] (6)

= E [E [Y (0)R|X1]E [(1− Z1)/(1− e1(X1))|X1]] (7)

= E [Y (0)R|X1] (8)

= E [Y (0)|R = 1]Pr(R = 1), (9)

where (5) holds by law of iterated expectations, (6) holds by Lemma, and (7) and (8)
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hold by Assumption 4. Moreover since 1−D+ = R|ZA = 0 and 1−ZA = Πw
j=1(1−Zj):

E
[
(1−D+)Πw

j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣X1

]
= E

[
RΠw

j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣X1

]
(10)

= E [R(1− Z1)/(1− e1(X1))|X1] (11)

= Pr(R = 1|X1), (12)

where (11) holds by Lemma and (12) holds by Assumption 4. Since E[Pr(R = 1|X1 =

x)] = Pr(R = 1), the result holds.

Remains to show that E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
/E[r(X1)] is a sharp

upper bound for E[Y (1)|R = 1]. I first demonstrate that p(x) = Pr(R = 1|D+ =

0, Z1 = 1, X1 = x). Assumption 4 together with D+ = 1 − R+|Z1 = 1 implies

that r+(x) = Pr(R+ = 1|X1 = x). Under Assumption 3, Pr(R = 1|X1 = x) =

Pr(R = 1, R+ = 1|X1 = x). Applying the definition of conditional probability gives

p(x) = Pr(R = 1|R+ = 1, X1 = x). Assumption 4 together with D+ = 1−R+|Z1 = 1

gives Pr(R = 1|D+ = 0, Z1 = 1, X1 = x) = Pr(R = 1|R+ = 1, X1 = x), which implies

the result.

The remainder of the proof is similar to Lee (2009). Let γx = E[Y |Z1 = 1, D+ =

0, Y ≥ q(1 − p(x), x), X1 = x]. I next demonstrate that γx is a sharp upper bound

for E[Y (1)|X1 = x,R = 1]. Using that p(x) = Pr(R = 1|D+ = 0, Z1 = 1, X1 = x),

Corollary 4.1 in Horowitz & Manski (1995) gives, γx ≥ E[Y |Z1 = 1, D+ = 0, R =

1, X1 = x]. Using that D+ = 0|R = 1 and Y = Y (1)|Z1 = 1 and by Assumption 4,

E[Y |Z1 = 1, D+ = 0, R = 1, X1 = x] = E[Y (1)|X1 = x,R = 1], meaning that γx is an

upper bound for E[Y (1)|X1 = x,R = 1]. Since p(x) is identified and Y (1) is observed

only among those whose first ACP succeeded (because Pr(D1 = 1|Z1 = 0) = 0)

Corollary 4.1 in Horowitz & Manski (1995) implies sharpness.

Let fx|R=1(x) be the p.d.f. of X1 conditional on R = 1. Applying Bayes rule

for densities to Pr(R = 1|X1 = x) identified by r(x) and p.d.f. of X1 identified

directly identifies fx|R=1(x), making
∫
X1
γxfx|R=1(x)dx the sharp upper bound for

E[Y (1)|R = 1].
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The last step is to show that:∫
X1

γxfx|R=1(x)dx = E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
/E[r(X1)].

By the law of iterated expectations:

E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
= E

[
1

e1(X1)
E[Y (1−D+)1{Y >q(1−p(X1),X1)}Z1|X1]

]
.

Applying the definition of conditional probability:

E[Y (1−D+)1{Y >q(1−p(X1),X1)}Z1|X1] =

E[γX1|X1] Pr(D
+ = 0, Z1 = 1, Y > q(1− p(X1), X1)|X1).

Applying the definition of conditional probability twice:

Pr(D+ = 0, Z1 = 1, Y > q(1− p(X1), X1)) =

Pr(Y > q(1− p(X1), X1)|D+ = 0, Z1 = 1, X1) Pr(D
+ = 0|Z1 = 1, X1) Pr(Z1 = 1|X1).

Using the definitions of p(X1), r
+(X1), and e1(X1), the term on the right-hand side is

p(X1)r
+(X1)e1(X1), and from definition of p(X1) it simplifies to r(X1)e1(X1), giving:

E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
= E

[
1

e1(X1)
E[γX1|X1]r(X1)e1(X1)

]
= E[γX1r(X1)].

Applying Bayes rule for densities: E[γX1r(X1)] =
∫
X1
γxfx|R=1(x)dxPr(R = 1). Since

E[r(X1)] = Pr(R = 1), the statement holds.
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A2 Estimating the Bounds

Section A2.1 presents the estimator. Section A2.2 demonstrates orthogonality. Sec-

tion A2.3 describes the implementation.

A2.1 Estimator

The method of Semenova (2023) for the ZRL procedure consists of two key compo-

nents: orthogonalization and sample splitting. Orthogonalization modifies the base-

line moments by adding terms that preserve their expectations at the true nuisance

parameter while eliminating sensitivity to small estimation errors in the nuisance pa-

rameter. Sample splitting means that the nuisance parameter for each observation

is estimated without using that observation. These components together allow infer-

ence using standard methods, ensuring the estimation of the nuisance parameter does

not affect the asymptotic distribution of the averaged moments for a broad class of

nonparametric estimators.

I modify the moments in Semenova (2023) to incorporate the first step of my iden-

tification approach. Specifically, I replace the terms for the complier control outcome

and share with corresponding terms for the relier control outcome and share. These

modifications align with the way the two parameters are identified in the Theorem,

using outcomes and parenthood indicators among women who never experience ACP

success, weighted by the number of ACPs and the propensity score at each ACP,

ej(Xj). Since this makes the moments sensitive to the propensity scores, I include

additional terms to correct for this sensitivity. These terms account for the role of

the scores in estimating the relier average control outcome and the relier share.

The moment functions are given in Table A1. The new moments identify the same

parameters as the baseline moments:

E[ψL+(G, ξ0)] = E[mL(G, η0)], E[ψU+(G, ξ0)] = E[mU(G, η0)].

However, the original moments are sensitive to small errors in the nuisance parameter,

whereas the new moments are not. For example, for some j, let êj(xj) be an estimate

of the propensity score ej(xj) such that êj(xj) ̸= ej(xj) for xj ∈ X 1
j . Define r ∈
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Table A1: Orthogonal Moment Functions

Moment functions

ψL+(G, ξ0) Y (1−D+)1{Y <q(p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

+q(p(X1), X1)
[
Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

− Z1

e1(X1)
p(X1)(1−D+ − r+(X1))− Z1

e1(X1)
(1−D+)(1{Y <q(p(X1),X1)} − p(X1))

]
−Z1−e1(X1)

e1(X1)
zL+(1, X1)r1(X1) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−ej(Xj))

ek(Xk)−Zk

1−ek(Xk)
[rk(Xk)βk(Xk)

+q(p(X1), X1)(r1(X1)− rk(Xk))]

ψU+(G, ξ0) Y (1−D+)1{Y >q(1−p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

+q(1− p(X1), X1)
[
Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

− Z1

e1(X1)
p(X1)(1−D+ − r+(X1))− Z1

e1(X1)
(1−D+)(1{Y >q(1−p(X1),X1)} − p(X1))

]
−Z1−e1(X1)

e1(X1)
zU+(1, X1)r1(X1) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−ej(Xj))

ek(Xk)−Zk

1−ek(Xk)
[rk(Xk)βk(Xk)

+q(1− p(X1), X1)(r1(X1)− rk(Xk))]

ψ−(G, ξ0) Y (1−D+) Z1

e1(X1)
p(X1)− Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

−β+(X1)
[

Z1

e1(X1)
(1−D+−r+(X1))

r+(X1)
r1(X1)−Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

]
−Z1−e1(X1)

e1(X1)
β+(X1)r1(X1) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)
(1−ej(Xj))

ek(Xk)−Zk

1−ek(Xk)

[
rk(Xk)βk(Xk)

+β+(X1)(r1(X1)− rk(Xk))
]

ψR(G, ξ0) r1(X1) + (1−D+ − r1(X1))Π
w
j=1

(1−Zj)
(1−ej(Xj))

+Σw
k=11{A≥k}Π

k−1
j=1

(1−Zj)
1−ej(Xj)

(ek(Xk)−Zk)
1−ek(Xk)

[r1(X1)− rk(Xk)]

Nuisance functions

ξ0(x1, . . . , xw) {e1(x1), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1), q(1− p(x1), x1),
β1(x1), . . . , βw(xw), β

+(x1), z
U+(x1), z

L+(x1)}
rk(x) E[(1−D+)/(ΠA

j=k+1(1− ej(Xj))) | Xk = x, ZA = 0]

E[ΠA
j=k+1(1− ej(Xj)) | Xk = x, ZA = 0]

βk(x) E[Y/(ΠA
j=k+1(1− ej(Xj))) | Xk = x,D = 0]

E[ΠA
j=k+1(1− ej(Xj)) | Xk = x,D = 0]

β+(x) E[Y | X1 = x, Z1 = 1, D+ = 0]
zU+(x) E[Y | X1 = x, Z1 = 1, D+ = 0, Y ≥ q(1− p(x), x)]
zL+(x) E[Y | X1 = x, Z1 = 1, D+ = 0, Y ≤ q(p(x), x)]

[0, 1) → ψU+(G, r) ≡ ψU+(G, ξr), where:

ξr = {e1(x1), . . . , el(xl, r), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1),

q(1− p(x1), x1), β1(x1), . . . , βw(xw), β
+(x1), z

U+(x1), z
L+(x1)},

and where el(xl, r) = el(xl)+ r(êl(xl)− el(xl)), meaning that el(xl, 0) = el(xl). Then,
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for the new moment:

∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 a.s.,

while for the original moment:

∂r E[mU(G, ηr)|Xl]|r=0 ̸= 0 a.s.,

meaning that the original moment is sensitive to estimation errors in êj(Xj), whereas

the new moment is not.

The estimator for θL is:

θ̂L =

(∑
i

(
ψL+(Gi, ξ̂i)1{p(X1)≤1} + ψ−(Gi, ξ̂i)1{p(X1)>1}

))
/

(∑
i

ψR(Gi, ξ̂i)

)

where Gi is the data for observation i and ξ̂i is the nuisance parameter for observation

i, estimated on a subsample that excludes observation i. The estimator for θU is

symmetric.

A2.2 Orthogonality

I demonstrate orthogonality of ψU+(G, ξ0) with respect to one of the propensity scores

el(xl) for l s.t. 1 < l < w. The arguments for other parameters involve first applying

the Lemma to eliminate the dependence of the conditional expectation of the moment

function on propensity scores ej(xj) for j > 1. Afterward, the steps are similar to

those in Semenova (2023). The approach for other moments follows a similar process.

I demonstrate that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0, a.s.. Since the moment does not

depend on r when A < l (because 1{A≥l} = 0 and because el(Xl, r) = el(Xl) in such

cases) it is sufficient to show that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 for values of Xl s.t.

A ≥ l; the rest of the argument assumes Xl satisfies this condition.

For k ≥ l define Sk ≡ {1, . . . , k} \ {l}. Using that Zj = 0, ej(Xj) = 0|A < l

E[ψU+(G, ξr)|Xl] simplifies to:

E[ψU+(G, ξr)|Xl] = E
[
− Y (0)RΠj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
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+ q(p(X1), X1)[Πj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

+
w∑

k=l+1

1{A≥k}Πj∈Sk−1

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

ek(Xk)− Zk

1− ek(Xk)
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))]

+ 1{A≥k}Πj∈Sl

(1− Zj)

(1− ej(Xj))

el(Xl, r)− Zl

1− el(Xl, r)
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))]

∣∣∣∣Xl

]
.

Define:

f l
k(Xk) ≡ 1{A≥k}Πj∈Sk−1

(1− Zj)

(1− ej(Xj))

1− Zl

(1− el(Xl, r))
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))].

For k > l:

E
[
f l
k(Xk)

ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣Xl

]
= E

[
E
[
f l
k(Xk)

ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣Xk, Xl

]∣∣∣∣Xl

]
(13)

= E
[
f l
k(Xk)E

[
ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣Xk

]∣∣∣∣Xl

]
(14)

= 0, (15)

where (13) holds by law of iterated expectations, (14) holds because Xk contains Xl,

and (15) holds because: E
[
ek(Xk)−Zk

1−ek(Xk)

∣∣∣∣Xk

]
= 0.

Moreover, defining E
[

(1−Zl)
(1−el(Xl,r))

∣∣∣∣Xl

]
≡ hrl (Xl, Zl), by the Corollary:

E
[
− Y (0)RΠj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

+ q(p(X1), X1)[Πj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

∣∣∣∣Xl

]
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= E
[
− Y (0)RΠj∈Sl

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

+ q(p(X1), X1)[Πj∈Sl

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

∣∣∣∣Xl

]
= Πj∈Sl

(1− Zj)

(1− ej(Xj))
E[−Y (0)R + q(p(X1), X1)[(R− r1(X1))]|Xl]h

r
l (Xl, Zl) (16)

= Πj∈Sl

(1− Zj)

(1− ej(Xj))
[−βl(Xl)rl(Xl) + q(p(X1), X1)(rl(Xl)− r1(X1))]h

r
l (Xl, Zl)

(17)

≡ µl(Xl)h
r
l (Xl, Zl), (18)

where (16) also holds by the Corollary, and where (17) holds by applying the Corollary

to the definitions of βl(.) and rl(.), after noting that we are considering values of Xl

s.t. 1{A>l} = 1.

Similarly, applying the Corollary yields:

E
[
Πj∈Sl

(1− Zj)

(1− ej(Xj))

el(Xl, r)− Zl

(1− el(Xl, r))
[rl(Xl)βl(Xl)

+ q(p(X1), X1)(r1(X1)− rl(Xl))]

∣∣∣∣Xl

]
= Πj∈Sl

(1− Zj)

(1− ej(Xj))
E
[
el(Xl, r)− Zl

(1− el(Xl, r))

∣∣∣∣Xl

]
[rl(Xl)βl(Xl)

+ q(p(X1), X1)(r1(X1)− rl(Xl))].

Combining the above, E[ψU+(G, ξr)|Xl] simplifies to:

E[ψU+(G, ξr)|Xl] = µl(Xl)

[
E
[

(1− Zl)

(1− el(Xl, r))

∣∣∣∣Xl

]
− E

[
el(Xl, r)− Zl

(1− el(Xl, r))

∣∣∣∣Xl

]]
= µl(Xl)

[
1− el(Xl)

1− el(Xl, r)
− el(Xl, l)− el(Xl)

1− el(Xl, r)

]
= µl(Xl),
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meaning that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 a.s.. Meanwhile, for the baseline moment:

∂r E[mU(G, ηr)|Xl]|r=0 = ∂rµl(Xl)
1− el(Xl)

1− el(Xl, r)

∣∣∣∣
r=0

= µl(Xl)
1− el(Xl)

(1− el(Xl, r))2
(êl(Xl)− el(Xl)).

meaning that ∂r E[mU(G, ηr)|Xl]|r=0 ̸= 0 a.s..

A2.3 Implementation

I use 3-fold cross-fitting, meaning that in each sample split 2/3 of the observations are

used to estimate the nuisance parameter. Because I assume that the propensity scores

only include a few discrete covariates—age in years, a dummy for higher education,

and procedure type—they could be estimated nonparametrically using saturated fixed

effects regressions. However, later propensity scores need to be estimated on small

samples, and including many fixed effects makes them susceptible to outliers. This

is especially undesirable because these scores are also used as weights to estimate

other nuisance functions. Instead, in my main specification, I estimate them using

logistic regressions. Specifically, for each ACP, I regress the outcome among women

who entered that ACP on second-order polynomials of women’s and partners’ ages

at the time of the procedure, interacted with treatment-type dummies (IUI or ACP),

and separate dummies for each partner having at least a bachelor’s degree.32 To

further avoid outlier weights, I only use the first 10 ACPs women undergo and treat

conceptions through later ACPs as natural; only 7% of women reach the tenth ACP.

This means that, in my application, reliers are women who would remain childless in

the scenario where their first 10 ACPs fail. Including up to 15 ACPs has little impact

on my estimates. The remaining nuisance functions are estimated using Generalized

Random Forests for conditional expectations and quantiles (Athey et al., 2019).33

32Using age-fixed effects and/or excluding the education dummies has little impact.
33I estimate zU+

t and zL+t by trimming data above or below the estimated quan-
tiles and estimating conditional expectations. Ideally, a nonparametric estimator for
truncated conditional expectations, such as Olma (2021), should be used, but none
are implemented at the time of writing.
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The covariates in X1 include the woman’s and their partner’s income and work hours

measured in the year before the woman’s first ACP, and other covariates included

in the first propensity score. The covariates in Xk additionally include those from

the propensity scores at all ACPs up to and including ACP k. I modify work hours

and income outcomes by adding a small amount of continuously distributed noise to

ensure the new outcomes are continuous u ∼ U(0, 0.001).34 Following Heiler (2024),

I based my confidence intervals for the bounds on Stoye (2020).

Confidence intervals for the bounds on the effect scaled by the treated mean are

also based on Stoye (2020), with covariance matrices estimated using delta method

in the following steps: (1) estimate ξ̂i using cross-fitting, (2) construct separate sam-

ple moments for the control mean and the upper and lower bounds for the treated

mean evaluated at ξ̂i (m1,m2, and m3, respectively), (3) compute the joint covari-

ance matrix for the three sample moments, (4) obtain the joint covariance matrix for

(m2 −m1)/m2 and (m3 −m1)/m3 using delta method.

A3 Extensions for Bounds

Section A3.1 introduces an alternative monotonicity assumption following Semenova

(2023) and presents the corresponding estimates. Section A3.2 proposes a method

to leverage continuous covariates without relying on orthogonalization and sample

splitting and reports the results. Section A3.3 discusses the age differences between

partners, their implications for calculating the share of gender inequality caused by

parenthood, and provides relevant robustness checks. Section A3.4 presents an ex-

tension to bound effects over time for a stable group. Section A3.5 presents bounds

that do not leverage monotonicity.

A3.1 Relaxing Monotonicity Following Semenova (2023)

A challenge in implementing the bounds under a non-trivial monotonicity assumption

arises when, for some values of X1, such as x∗1, the estimated relier share exceeds the

subsequent relier share. This may indicate a violation of monotonicity but can also

34The procedure requires continuously distributed outcomes only to avoid ties in
trimming; adding continuously distributed noise resolves the issue.
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occur due to estimation noise, as the two shares are computed from different groups.

In either case, it results in the estimated trimming share p(x∗1) exceeding one, making

the quantile function q(p(x∗1), x
∗
1) ill-defined. To address a similar issue in Lee (2009),

Semenova (2023) relaxes the monotonicity assumption, allowing its direction to vary

with X1. In my setting, this implies that all women with certain pre-ACP covariates

who had a non-ACP child after ACP failure would have also had a non-ACP child if

their first ACP had succeeded. This assumption is harder to justify economically and

the adapted approach is challenging to implement, as it requires estimating weighted

quantile functions on small groups of women entering subsequent ACPs. Because

of this, my main specification retains the original monotonicity assumption, treating

cases where the estimated relier share exceeds the subsequent relier share as if the two

were equal. If this reversal occurs because the true shares are very close, this method

and the approach that follows Semenova (2023) should yield nearly identical results.

Under sequential unconfoundedness, the expectation of the moment for treating them

as equal, ψ−(G, ξ0), identifies the difference between the conditional subsequent relier

average treated outcome and the conditional relier average control outcome:

E[ψ−(G, ξ0) | X1 = x∗1]

E[r(X1) | X1 = x∗1]
= E[Y (1) | R+ = 1, X1 = x∗1]− E[Y (0) | R = 1, X1 = x∗1].

When the shares of the two types are equal, monotonicity implies that the two groups

are the same, and the difference between the two terms is E[τ | R = 1, X1 = x∗1].

To test the sensitivity of my result, I allow for the direction of monotonicity to

vary with covariates following Semenova (2023). Define Xhelp ≡ {x : r+(x) ≥ r(x)}
and Xhurt ≡ X1 \ Xhelp. The relaxed monotonicity assumption is that ∀x ∈ Xhelp

R+ ≥ R a.s., and ∀x ∈ Xhurt R
+ < R a.s.. Table A2 presents the moments for the

case when X1 ∈ Xhurt. The new estimator of the lower bound is:

∑
i

(
ψL+(Gi, ζ̂i)1{p(X1)≤1} + ψL−(Gi, ζ̂i)1{p(X1)>1}

)
∑

i

(
ψR(Gi, ζ̂i)1{p(X1)≤1} + ψR+(Gi, ζ̂i)1{p(X1)>1}

) .
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Figure A11: Effect on Women Under Relaxed Monotonicity Following Semenova (2023)

The new estimator of the upper bound is:

∑
i

(
ψU+(Gi, ζ̂i)1{p(X1)≤1} + ψU−(Gi, ζ̂i)1{p(X1)>1}

)
∑

i

(
ψR(Gi, ζ̂i)1{p(X1)≤1} + ψR+(Gi, ζ̂i)1{p(X1)>1}

) .

I implement it following the baseline approach. Since a weighted generalized quantile

forests estimator is unavailable, I estimate all nuisance functions involving expecta-

tions and quantiles using OLS and quantile regressions, respectively. Using regression

for the quantile function has little impact on the estimates. Figure A11 shows the

results for women’s outcomes, which closely resemble the baseline estimates.

A3.2 Alternative Approach to Continuous Covariates

Here I introduce a new method to narrow the bounds by leveraging continuous co-

variates. For a known measurable function g : X1 → R, define ε ≡ Y (1) − g(X1).

Intuitively, g(X1) can be thought of as OLS fitted values, and ε can be thought of as

OLS residuals after regressing Y onX1 among women whose first ACP succeeded. The

idea behind the new approach is that the component of E[Y (1)|R = 1] explained by

g(.) can be identified. As a result, only the residual component needs to be bounded,

and the distribution of ε can be tighter than the distribution of Y (1), which results in
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Table A2: Moment Functions for Covariate-Conditional Monotonicity

Moment functions

ψ−
L (W, ζ0)

Z1

e1(X1)
(1−D+)Y −Πw

j=1
1−Zj

1−ej(Xj)
(1−D+)Y 1{Y >q0(1−1/p(X1),X1)}

−q0(1− 1/p(X1), X1)
[

Z1

e1(X1)
(1−D+ − r+(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
1

p(X1)
(1−D+ − r1(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)(1{Y >q0(1−1/p(X1),X1)} − 1/p(X1))

]
−Z1−e1(X1)

e1(X1)
β+(1, X1)r

+(X1)

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−ej(Xj)
ek(Xk)−Dk

1−ek(Xk)

×
[ (
rk(X1)r

L
k (Xk)z

L−
k (Xk) +

q0(1−1/p(X1),X1)
p(X1)

(r1(X1)− rk(X1))
)

+q0(1− 1/p(X1), X1)rk(X1)(1/p(X1)− rLk (Xk))
]

ψ−
U (W, ζ0)

Z1

e1(X1)
(1−D+)Y −Πw

j=1
1−Zj

1−ej(Xj)
(1−D+)Y 1{Y <q0(1/p(X1),X1)}

−q0(1/p(X1), X1)
[

Z1

e1(X1)
(1−D+ − r+(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
1

p(X1)
(1−D+ − r1(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)(1{Y <q0(1/p(X1),X1)} − 1/p(X1))

]
−Z1−e1(X1)

e1(X1)
β+(1, X1)r

+(X1)

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−ej(Xj)
ek(Xk)−Dk

1−ek(Xk)

×
[ (
rk(X1)r

U
k (Xk)z

U−
k (Xk) +

q0(1/p(X1),X1)
p(X1)

(r1(X1)− rk(X1))
)

+q0(1/p(X1), X1)rk(X1)(1/p(X1)− rUk (Xk))
]

ψR+(G, ζ0) r+(X1) + (1−D+ − r+(X1))
Z1

e1(X1)

Nuisance functions

ζ0(x1, . . . , xw) {e1(x1), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1), q(1− p(x1), x1),

β1(x1), . . . , β
w(xw), β

+(x1), z
U+(x1), z

L+(x1), z
U−
1 (x1), . . . , z

U−
w (xw), q

0(1/p(x1), x1),

q0(1− 1/p(x1), x1), z
L−
1 (x1), . . . , z

L−
w (xw), r

L
1 (x1), . . . , r

L
w(xw), r

U
1 (x1), . . . , r

U
w (xw)}

q0(u, x) inf{q : u ≤ E[1{Y≤q}/Π
w
j=2(1− ej(Xj)) | X1 = x,D = 0]/

E[Πw
j=2(1− ej(Xj)) | X1 = x,D = 0]}

zL−
k (x) E[Y/Πw

j=k+1(1− ej(Xj)|Y ≥ q0 (1− 1/p(X1), X1) , D = 0, Xk = x]

E[Πw
j=k+1(1− ej(Xj)|Y ≥ q0 (1− 1/p(X1), X1) , D = 0, Xk = x]

zU−
k (x) E[Y/Πw

j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]

E[Πw
j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]

rLk (x) E[1Y >q0(1−1/p(X1),X1)/Π
w
j=k+1(1− ej(Xj)|D = 0, Xk = x]

E[Πw
j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]

rUk (x) E[1Y <q0(1/p(X1),X1)/Π
w
j=k+1(1− ej(Xj)|D = 0, Xk = x]

E[Πw
j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]

narrower bounds. Formally, first, by definition, E[Y (1)|R = 1] = E[g(X1) + ε|R = 1].

Second, since X1 is observed, E[g(X1)|R = 1] can be identified using women who
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remain childless similar to E[Y (0)|R = 1], specifically:

E
[
g(X1)

(1−D)

Πw
j=1(1− ej(Xj))

]/
E
[

(1−D)

Πw
j=1(1− ej(Xj))

]
= E [g(X1) | R = 1] .

Since among women whose first ACP succeeds, Y (1) and g(X1) are observed, ε is

observed, meaning that E[ε|R = 1] can be bounded similar to how E[Y (1)|R = 1]

is bounded using the baseline method without covariates. Then, it can be combined

with the point-identified E[g(X1)|R = 1] to obtain bounds on E[Y (1)|R = 0].

The bounds obtained using this approach need not be narrower and could even

be wider than the baseline bounds that ignore covariates. To see this, consider a

case where Y is constant. In this case, the baseline bounds collapse to a point,

whereas the new bounds may not, since g(X1) need not be constant, meaning that ε

is not constant either. In practice, however, the bounds can be substantially narrower

than those that do not leverage covariates, and in some cases, they can match the

sharp bounds. Bounds based on different g(.)’s can also be compared empirically.

This approach can also be used to leverage continuous covariates in the Lee (2009)

setting and can be combined with the method proposed by Lee (2009) to use discrete

covariates by estimating bounds for each discrete covariate cell before aggregating.

I implement the above approach in the following steps: (1) estimate ej(xj) for all

j to obtain estimates of weights ww
i = Z1i/e1(X1i) + (1−ZAi)/Π

Ai
j=1(1− ej(Xji)), (2)

estimate g(x1) by regressing Y on X1 using women with Z1 = 1 and estimates of

weights ww
i , (3) separately regress D on X1 using women whose first ACP succeeded

and women whose ACPs failed, with estimates of weights ww
i , (4) split the sample

into quintiles based on differences in fitted values for the two regressions in step (3),

(5) estimate bounds on the effect in each quintile using Y − g(X1) as the outcome

with weights ww
i , (6) aggregate across bins with weights proportional to the estimated

relier share in each bin with estimates of weights ww
i . Confidence intervals are based

on Stoye (2020) with the covariance matrix obtained via multiplier bootstrap with

150 draws. Weights wi ∼ exp(1) are used for step (1), and weights ww
i are replaced

with wiw
w
i for other steps. Figure A12 presents the results for women’s outcomes,

showing that the estimates remain largely consistent with the baseline approach.
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Figure A12: Effects on Women Using Residualization Approach (Leave-Adjusted Hours)

A3.3 Accounting for Age Difference Between Partners

My estimates of the share of gender inequality caused by parenthood focus on the

within-couple gender gap in each year after becoming parents. This gap also captures

differences related to the within-couple age gap, which may distort the picture of

aggregate gender inequality in the economy because men’s outcomes are measured

at systematically older ages. A particular concern is that if work hours and income

increase with age, my estimates might understate the share of aggregate gender in-

equality caused by parenthood.

Ideally, using cumulative lifetime outcomes would directly address this issue, but

since such data is unavailable, a different approach is required. One way would be

to correct for age differences parametrically, but this relies on strong and potentially

opaque assumptions. Instead, I opt for a simple approach that fits into my framework:

I adjust the timing of when men’s outcomes are measured based on the women’s age.

For example, if a woman is two years younger than her male partner, I lag the male’s

outcome in each period by two years. This adjustment ensures that gender gaps in

outcomes are assessed at comparable life-cycle stages within couples. The adjustment

reduces my sample by 22%, as it excludes couples where the male partner is much

older or younger, leaving me with 12,146 observations.

Figure A13 presents the results, showing that the adjustment has minimal impact
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Figure A13: Share of Gender Inequality Caused by Parenthood Using Partner’s Income
Lagged to Match Woman’s Age (Leave-Adjusted Hours)

on estimates. The upper bound for the share of gender inequality in hours decreases

slightly, while that for income increases by no more than 10 percentage points.

A3.4 Effects Over Time and Stable Relier Group

The changes in my main estimates over time reflect a combination of two factors.

First, how the effect of parenthood evolves with time spent in parenthood. Second,

since the group of reliers shrinks over time, how effects differ between women who

remain reliers for a different duration. This means that my main results provide

limited insight into how the effects evolve with time spent in parenthood. A similar

concern regarding changing compliers applies to both the IV and the ES estimates.

To address this, I adapt my approach to bound the effects for women who remain

reliers until the last period, allowing evaluation of how effects change with time spent

in parenthood. This is enabled by the irreversibility of fertility, which ensures that

past control outcomes are observable for any childless group at a given time, and

the full trajectory of treated outcomes is observable for all women whose first ACP

succeeded. For identification and estimation, this involves replacing outcomes Yt
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Figure A14: Effects for a Stable Group of Women

with past outcomes Yk for 0 < k < t.35 Figure A14 presents estimates for women who

remain reliers seven years after their first ACP, which align with the baseline results.

A3.5 Bounds without Monotonicity

Figure A15 presents effects on women’s outcomes. In the first three years, the results

are similar to baseline. By the fourth year, the bounds widen, including zero ef-

fects. Nonetheless, these results imply that parenthood causes at most 64% of gender

inequality in hours and 70% in income over the sample period.

35The sequential unconfoundedness assumption must be adapted accordingly.
Without monotonicity, these bounds are at least as wide as baseline since the trimmed
non-relier share cannot decrease over time. With monotonicity, they may narrow if
the decline in subsequent reliers exceeds the increase in reliers.
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Figure A15: Effects on Women without Monotonicity

A4 Procedure Descriptives and Balance

Table A3 presents balance results for subsequent ACPs up to the tenth. Since these

ACPs also include IVF, I additionally control for each partner’s age interacted with

treatment type. This ensures that ACP success only needs to be as good as random

among women who undergo the same procedure (and are of similar age), allowing for

selection into IUI or IVF based on women’s types and potential outcomes. Overall,

the results suggest no systematic differences in pre-ACP outcomes between those with

successful and unsuccessful subsequent ACPs, supporting the conditional sequential

unconfoundedness assumption.

Figure A16 presents the realized distribution of the number of ACPs women un-

dergo, along with the estimated distributions of willingness to undergo ACP and relier

shares, all measured seven years after the first ACP. It also presents the relationship

between R and W , suggesting the two are uncorrelated.
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Table A3: Balance in Later ACPs

Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Work (W) 0.009 -0.004 0.022 0.014 0.039 -0.003 -0.011 0.022 0.030

(0.010) (0.011) (0.011) (0.012) (0.012) (0.017) (0.018) (0.019) (0.024)

Work (P) 0.006 0.016 0.012 0.020 -0.004 -0.004 -0.019 0.017 0.030

(0.010) (0.010) (0.012) (0.012) (0.015) (0.015) (0.019) (0.020) (0.027)

Hours (W) 32.885 -4.482 52.999 41.332 81.957 11.894 -18.836 72.659 24.819

(18.721) (20.032) (21.045) (22.686) (25.131) (31.187) (32.937) (38.210) (48.490)

Hours (P) 21.655 24.730 23.756 38.965 9.666 -6.580 -28.458 30.525 43.722

(21.018) (21.089) (23.574) (25.255) (30.585) (31.513) (37.976) (44.856) (52.821)

Income 1000s e (W) 1.481 -0.015 1.685 1.802 2.086 0.150 -0.043 0.866 -0.444

(0.615) (0.624) (0.767) (0.830) (0.913) (1.000) (1.092) (1.234) (1.629)

Income 1000s e (P) -0.749 1.002 2.040 0.800 0.774 0.025 0.259 -0.324 0.149

(0.835) (0.912) (1.066) (1.115) (1.424) (1.424) (1.563) (1.737) (2.203)

Observations 12,974 10,774 8,726 6,977 5,411 3,944 2,723 1,850 1,174

Joint p-val. 0.175 0.976 0.234 0.303 0.140 1.000 0.956 0.704 0.917

Note: Each column reports the difference in average characteristics between women whose respective ACP succeeded
and those for whom it failed, among those who underwent the procedure, using inverse probability weights for each
ACP following the main specification. Labor market outcomes measured in the year before first ACP. (W) - woman,
(P) - partner. Standard errors in parentheses.
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Figure A16: ACP Histories and Reliance

A5 Instrumental Variable and Event Study

I implement the IV following Lundborg et al. (2017), where the first stage specification

is:

Dit = Zi1β
FS
t +Xi1χ

FS
t + εFS

it ,
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Figure A17: 95% Confidence Interval Width for Different Methods

and the second stage specification is:

Yit = D̂itβ
IV
t +Xi1χ

IV
t + εIVit ,

where the parameters for the effect of parenthood in period t is βIV
t .

I implement the ES following the fixed effect specification of Kleven et al. (2019):

Yit = βES
0 +

∑
j ̸=0

βES
j 1{t=j} +

∑
a

αa1{ageit=a} +
∑
y

γy1{yearit=y} + υit, (19)

where the parameters for the effect of parenthood in period t is βES
t .

A6 Confidence Interval Comparison

While my method only partially identifies the effects, my estimates are substantially

more precise. Figure A17 compares the width of 95% confidence intervals for my

bounds, IV estimates, and ES estimates. The ES is implemented using women whose

first ACP succeeded. The confidence intervals for the three methods are almost

identical. The primary source of uncertainty in my estimates arises from identifying

bounds rather than sampling variability in the estimation process. Similarly, the
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method introduced in Section A7, used to estimate τATR under the assumption of

static effects, provides a more precise alternative to the IV method. Intuitively, this

improvement occurs because much of the uncertainty around IV estimates stems from

scaling the reduced form by a low first stage. Leveraging women’s complete ACP

histories improves the first stage by expanding it from compliers to reliers, thereby

reducing the amplification of noise.

A7 Testing Assumptions for Bias Correction

In this section, I introduce an estimator of τATR(t) that parallels the Wald estimator

of τLATE(t), as it identifies a linear combination of a relier average treatment effect

and a relier average effect of delaying parenthood. I then demonstrate how each of

the two estimators can be used to identify τATE(t) under the parametric assumption

that justifies the methods by Bensnes et al. (2023) and Gallen et al. (2023). Since the

assumption implies that both methods should yield identical results, differing results

suggest the assumption is violated.

I first introduce functions for estimating τLATE and τATR in a doubly-robust man-

ner to maximize precision:

g0+a (G) = γ0,1+a (X1) + (a− γ0,1+(X1))Π
w
j=1

(1− Zj)

(1− ej(Xj))

+ Σw
k=1

[
1{A≥k}Π

k−1
j=1

(1− Zj)

1− ej(Xj)

(ek(Xk)− Zk)

1− ek(Xk)
[γ0,1+a (X1)− γ0,k+a (Xk)]

]
g0a(G) = γ0a(X1) + (a− γ0a(X1))

Z1

e1(X1)

g1a(G) = γ1a(X1) + (a− γ1a(X1))
1− Z1

1− e1(X1)
,

where γ1a(X1) is the OLS prediction of a given X1 among observations with Z1 = 1

with weights 1/e1(X1), γ
0
a(X1) is the OLS prediction of a givenX1 among observations

with Z1 = 0 with weights 1/(1− e1(X1)), γ
0,k+
a (X1) is the OLS prediction of a at Xk

given Xk among observations with Z1 = 0, A ≥ k with weights 1/(ΠA
j=1(1− ej(Xj))).

E[g1Yt
(G)−g0Yt

(G)]/E[g1Dt
(G)−g0Dt

(G)] corresponds to a Wald estimator of τLATE(t)

where the reduced form and the first stage are both implemented in a doubly-robust

63



manner. E[g1Yt
(G) − g0+Yt

(G)]/E[g1Dt
(G) − g0+Dt

(G)] corresponds to the Wald-like esti-

mator of τATR(t), where the reduced form and the first stage are also implemented in

a doubly-robust manner.

Following standard argument gives:

E[g1Y1
(G)− g0Y1

(G)]

E[g1D1
(G)− g0D1

(G)]
= τLATE(1),

and similarly, using the Lemma and the standard argument gives:

E[g1Y1
(G)− g0+Y1

(G)]

E[g1D1
(G)− g0+D1

(G)]
= τATR(1).

After the first period, both estimators may be biased. In the second period:

E[g1Y2
(G)− g0Y2

(G)]

E[g1D2
(G)− g0D2

(G)]
= τLATE(2) +

Pr(C2 = 0, C1 = 1)

Pr(C2 = 1)
E[Y2(1)− Y2(2)|C2 = 0, C1 = 1]

E[g1Y2
(G)− g0+Y2

(G)]

E[g1D2
(G)− g0+D2

(G)]
= τATR(2) +

Pr(R2 = 0, R1 = 1)

Pr(R1 = 1)
E[Y2(1)− Y2(2)|R2 = 0, R1 = 1].

The correction methods by Bensnes et al. (2023); Gallen et al. (2023) are valid when:

Assumption 7 (Parametric effects). Yt(k)− Yt(0) = τATE(1 + t− k) for all t

and k ≤ t.

The assumption has two implications: first, the effects are homogeneous across

individuals; second, the effects depend only on time spent in parenthood and not on

the moment of becoming a parent. Gallen et al. (2023) discuss how the assumption

can be relaxed; the relaxed version can be tested following similar steps.

Under parametric effects, the parameter identified by the Wald estimator in the

second period simplifies to:

E[g1Y2
(G)− g0Y2

(G)]

E[g1D2
(G)− g0D2

(G)]
= τATE(2) +

Pr(C2 = 0, C1 = 1)

Pr(C1 = 1)
(τATE(2)− τATE(1))

Since under Assumption 7 τATE(1) = τLATE(1), and since τLATE(1), Pr(C2 = 0, C1 =

1), and Pr(C2 = 1) are identified, τATE(2) can be backed out. Following similar
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reasoning for subsequent periods allows to back out τATE(t) for all t.

My test for Assumption 7 uses the fact that τATE(t) can also be backed out using

the Wald-like estimates of τATR(t), and that when the Assumption 7 holds, the two

approaches should give similar results. To ease exposition, define the pseudo-outcome:

Ŷ l
t =

Yt, if D1 = 1 or Dt = 0,

Yt − τ l(k), otherwise, where k = 1 + t− (min{j : Dj = 1}) ,

for l ∈ {C,R}, where:

τC(t) =
E[g1

Ŷt
(G)− g0

Ŷt
(G)]

E[g1D1
(G)− g0D1

(G)]
,

and

τR(t) =
E[g1

Ŷt
(G)− g0+

Ŷt
(G)]

E[g1D1
(G)− g0+D1

(G)]
.

For women who become mothers in later periods, the pseudo-outcome is the realized

outcome adjusted by subtracting the effect of being a mother for their motherhood

duration, which is identified in previous periods. Under Assumption 7, the pseudo-

outcome equals their control outcome. τC(t) corresponds to how τATE(t) is identified

using the Gallen et al. (2023) method based on τLATE(t). τR(t) corresponds to how

it can be identified using τATR(t). Under Assumption 7, τR(t) = τC(t) for all t; if

the two are not equal, at least one of the assumptions must be violated. Note that

the only additional assumption that I require relative to Bensnes et al. (2023) and

Gallen et al. (2023) is that the outcomes of subsequent ACPs are as good as random,

conditional on observables.

Figure A18 presents the results for women’s outcomes. Confidence intervals for

the difference between the estimates in each period are estimated using multiplier

bootstrap with weights wi ∼ exp(1) and 150 draws, where all parameters are esti-

mated sequentially in each draw. Estimates of τC(t) suggest a substantially smaller

career cost of motherhood than τR(t), which indicates that the parametric effects

assumption is violated.
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Figure A18: Estimates Using Parametric Bias Correction

A8 Selection Event Study

Section A8.1 discusses identification for the selection event study, and Section A8.2

discusses its implementation.

A8.1 Identification

To formally illustrate the ES approach in my model, I focus on women who conceive

through their first ACP. The parallel trends assumption states that conditional on age

and calendar time, control outcomes t periods after becoming a mother are the same as

control outcomes in the period before becoming a mother, on average: E[Yt(0)|aget =
a, yeart = y, Z1 = 1] = E[Y0(0)|age0 = a, year0 = y, Z1 = 1], for all t, a, y, where

aget and yeart are the woman’s age and calendar year in period t, respectively. This

assumption allows for unbiased predictions of childless outcomes in period t based on

women’s age and calendar year in period t, using outcomes of women who were of the

same age and in the same calendar year in period 0—just before becoming mothers.

Comparing the realized treated outcomes in period t with these predictions gives the
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average treatment effect:36

τATE(t) = E[Yt|Z1 = 1]− E[E[Y0|age0 = aget, year0 = yeart, Z1 = 1]|Z1 = 1].

When the parallel trends assumption does not hold, the bias term for τATE(t) is:

E[Yt(0)|Z1 = 1]− E[E[Y0(0)|age0 = aget, year0 = yeart, Z1 = 1]|Z1 = 1].

It measures the difference in age- and year-conditional average childless outcomes

between women who have their first child earlier versus later, reflecting selective

fertility timing.

I quantify the extent of selective timing specifically for reliers. Formally, this

procedure involves two steps. First, I identify the relier average control outcomes in

the period before their first ACP, conditional on age and calendar year: E[Y0(0) |
age0 = a, year0 = y,Rt = 1]. The identification procedure follows the same steps as

for the relier average control outcome E[Yt(0) | Rt = 1], except that all expectations

are conditioned on pre-ACP age and calendar year, and the realized labor market

outcome in period t is replaced by that in period 0. Then, as in the ES approach, I use

these conditional average control outcomes in period 0 to construct age- and calendar-

year-conditional predictions for control outcomes after t periods. The difference in

the relier average childless career trajectories from the baseline approach and the

constructed ones quantifies the extent of selective timing, specifically for reliers:

E[Yt(0)|Rt = 1]− E[E[Y0(0)|age0 = aget, year0 = yeart, Rt = 1]|Rt = 1].

This allows for a comparison with τATR, making it possible to distinguish, for a

consistent group, how much of the gender inequality associated with parenthood is

driven by the effect of parenthood itself versus selective timing.

36The inner expectation is over Y0, the outer expectation is over aget and yeart.
The inner expectation may not be well defined when the support of age0 and year0
may differ from that of aget and yeart.
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A8.2 Implementation

I implement the selection ES using (19) on a sample of women who remain childless

seven years after their first ACP, with weights ww
i = 1/ΠAi7

j=1(1 − ej(Xji)) to ensure

proportional representation of reliers with different willingness to undergo ACPs.

Standard errors are estimated via multiplier bootstrap as follows: (1) draw weights

wi ∼ exp(1), (2) estimate ej(xj) for all j using weights wi to obtain an estimate of

ww
i , (3) estimate the selection ES using weights wiw

w
i , (4) repeat steps 1–3 150 times

to obtain bootstrap estimates, (5) compute their variance.

Share of gender inequality due to parenthood and selective fertility in year t esti-

mated in the following steps: (1) construct separate sample moments for the control

mean and the upper and lower bounds for the treated mean (a1, a2, and a3, respec-

tively), where Y is the female labor market outcome subtracted from the male labor

market outcome in period t, (2) implement the selection ES using the female labor

market outcome and age, repeat it for the male labor market outcome and age, ob-

tain the estimate for period t, a4, by subtracting the female estimate for period t

from the male estimate for period t, (3) construct the bounds (a2 − (a1 + a4))/a2

and (a3 − (a1 + a4))/a3. Confidence intervals are based on Stoye (2020), with covari-

ance matrices estimated using multiplier bootstrap and delta method in the following

steps: (1) estimate ξ̂i using cross-fitting where Y is the female labor market outcome

subtracted from the male labor market outcome, (2) draw weights wi ∼ exp(1), (3)

implement the selection ES with weights wi using the female labor market outcome

and age, repeat it for the male labor market outcome and age, obtain the estimate

a4 for the difference between the male and the female estimates, (4) construct sepa-

rate sample moments for the control mean and the upper and lower bounds for the

treated mean evaluated at ξ̂i with weights wi (a1, a2, and a3, respectively), (5) repeat

steps 2-4 150 times to obtain a collection of bootstrap estimates, (6) estimate the

joint covariance matrix of a1, a2, a3 and a4, (7) obtain the joint covariance matrix for

(a2 − (a1 + a4))/a2 and (a3 − (a1 + a4))/a3 using delta method.
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Figure A19: Effects on Antidepressant Uptake

A9 Antidepressants

To maximize precision in estimating the impact on antidepressant uptake, I use the

method described in Section A7 with target parameter:

E[g1Yt
(G)− g0+Yt

(G)]

E[g1Dt
(G)− g0+Dt

(G)]
,

where the outcome is taking antidepressants in a given year. In the absence of dynamic

effects, it identifies τATR. Figure A19 presents the results, the effects are precisely

estimated and indistinguishable from zero.

A10 Monotonicity

Monotonicity states that all reliers are subsequent reliers, implying that the relier

share is at least as large as the subsequent relier share: Pr(R+ = 1) ≥ Pr(R = 1).

Figure A20 plots the estimated shares over time, showing that the subsequent relier

share consistently exceeds the relier share, in line with monotonicity.

Monotonicity further implies that the relier share is at least as large as the sub-
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Figure A20: Estimated Relier and Subsequent Relier Shares

sequent relier share at each covariate value: r+(X1) ≥ r(X1). Since the conditional

shares are estimated nonparametrically, formally testing whether their differences al-

low rejecting monotonicity is not trivial, but comparing them offers some insight.

The top left graph in Figure A21 plots the empirical distribution of the difference be-

tween estimated conditional subsequent relier and relier shares in year 7. For 25% of

observations, the difference is below zero. While this would contradict monotonicity

if observed in the true shares, such deviations can result from estimation error when

the shares are close. Namely, when all subsequent reliers are reliers Pr(R+ = R) = 1,

the difference should be below zero for 50% of observations. Consistent with this, the

differences are generally small, with only 5% of observations below −0.1, suggesting

no clear monotonicity violations.

The right graph in Figure A21 repeats the above for the partial monotonicity

assumption, which permits violations among women who would separate from their

partners or uptake antidepressants after ACP failure. The estimated difference be-

tween the two shares is below zero for only 5% of observations and below −0.1 for

just 1%, providing stronger support for partial monotonicity. The second-row panels

in Figure A21 repeat this analysis, allowing monotonicity to fail separately for those

who would uptake antidepressants or separate, yielding similar results. Equivalent
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Figure A21: Histogram of Estimated r+(X1)− r(X1)

results from earlier years are even more favorable for the assumption.

To formally test monotonicity using covariates, I adapt the approach of Semenova

(2023). I partition the sample into J = 25 discrete cells X1,j based on quintiles

of women’s work hours and age in the year prior to their first ACP. Since these

two covariates are highly predictive of the remaining covariates used in the analysis,

including additional ones results in small cells (e.g., almost no women have extremely

high work hours while having extremely low income). Monotonicity implies that the

subsequent relier share is at least as large as the relier share in each cell, meaning

that each value in the vector µ = (E[r+(X1)− r(X1) | X1 ∈ X1,j])
J
j=1 must be non-

negative. The null hypothesis is −µ ≤ 0, and the test statistic is maxj∈J
−µ̂j

σ̂j
. The

critical value is the self-normalized critical value of Chernozhukov et al. (2019). σj

are estimated using multiplier bootstrap with 100 draws and weights wi ∼ exp(1) to

account for the uncertainty in the estimation of propensity scores. Consistent with

the results in Figure A21, in 24% of cells, µ̂j in year 7 is negative. However, the

p-value for the test statistic is close to 1, indicating that these differences are not
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Figure A22: Effects on Resilient Women (Depression Only)

statistically significant, providing support for monotonicity. Using women’s income

instead of hours yields similar results.

In Section A3.1, I discuss how my estimation method accounts for reversed relier

and subsequent relier shares, propose an approach that relaxes monotonicity to allow

the direction to vary with covariates, and present corresponding estimates, which

align with my baseline results.

Finally, Figure A22 presents estimated labor market impacts of parenthood for

reliers who would not uptake antidepressants after ACP failure (but might separate

from their partner). The estimates are close to the baseline results.
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