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Abstract

I study how parenthood affects women’s labor market outcomes and gender inequal-

ity. I introduce a method to quantify the impacts that simultaneously addresses selec-

tive parenthood timing and parenthood timing-dependent effects. The method leverages

quasi-experimental variation in the success of assisted conception procedures through-

out women’s entire treatment histories. Using administrative Dutch data, I find that

parenthood persistently reduces women’s work hours and income by 9 to 24 percent.

Despite that, I find that at least half of the observed post-child gender inequality in these

outcomes is not caused by parenthood. Additionally, I propose a unified framework to

disentangle and quantify how selective timing and timing-dependent effects bias con-

ventional estimators, successfully reconciling key conflicting findings in the literature.

My method is applicable to other settings where individuals are quasi-experimentally

assigned to one state but may enter others either through direct selection or by opting

into quasi-experimental reassignment.
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1 Introduction

The differential impact of parenthood on the careers of women and men is widely considered

a major contributor to gender disparities in the labor market (Goldin, 2014; Blau & Kahn,

2017; Bertrand, 2020; Cortés & Pan, 2023; Kleven et al., 2024). Quantifying this impact is

crucial for understanding the sources of gender inequality and designing effective policies to

address it. However, this has proven difficult due to two factors commonly encountered in

applied economic research: selection and dynamic effects. Selection arises when the decision

to have children or the timing of parenthood is related to labor market outcomes indepen-

dent of fertility, such as when individuals with higher career potential delay childbearing.

Dynamic effects occur when the impacts vary depending on the timing of parenthood, for

instance, when early parenthood permanently hinders career progression.

I propose a method to quantify the effects of parenthood that is simultaneously robust to

selective parenthood timing and dynamic effects. The method leverages quasi-experimental

variation in the success of assisted conception procedures (ACP). It compares labor market

outcomes between women who become mothers through their first ACP and those who

remain childless after its failure. This comparison ensures robustness to dynamic effects by

eliminating differences in parenthood timing. The key challenge the method addresses is

that the group of women who remain childless after their first ACP fails may be selective.

To overcome this, it first leverages women’s complete ACP histories, accounting for births

resulting from subsequent ACPs. I show that a weighting scheme, which assigns greater

weight to childless women with more failed ACPs, can be used to identify the average

childless labor market outcomes for women reliant on ACPs to conceive. After leveraging

all quasi-experimental variation in fertility due to ACPs, the method applies a bounding

procedure to account for non-ACP births. I show that the share of women reliant on

ACPs to become mothers can be identified. Then, it can be used to construct worst-case

bounds for average motherhood labor market outcomes of this group by trimming the tails

of the outcome distribution among women whose first ACP succeeded. The only crucial

assumption for my method is that the success of each ACP a woman chooses to undergo is

as good as random, conditional on observables.

The identified bounds are sharp, meaning no effect within them can be ruled out without

additional assumptions or data. To tighten the baseline bounds, I assume that women who

have non-ACP children after a successful ACP would have had at least one child if ACPs

had failed. This assumption is consistent with the idea that families are more determined to

have at least one child than to have additional children. To estimate the bounds and justify

asymptotic inference, I build on the double/debiased machine learning approach developed

by Semenova (2023). This allows me to account for uncertainty in the second step of my

approach, which trims the tails of the outcome distribution.

I apply my estimator to administrative Dutch data, linking detailed labor market infor-

mation from tax records with comprehensive hospital medical records. My analysis focuses
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on couples attempting to conceive their first child through intrauterine insemination, also

known as artificial insemination. I find that, in the first three years of parenthood, women

experience reductions in both work hours and income between 6% and 33%. I then impose

the auxiliary assumption regarding additional non-ACP births. The bounds leveraging this

assumption indicate yearly reductions in women’s work hours between 10% and 25% and

decreases in income between 9% and 29%. These bounds remain stable for at least seven

years into parenthood. The bounds for men are similar in length but centered around zero.

During this period, parenthood causes between 36% and 54% of gender inequality in work

hours and up to 46% in income.

Currently, two methods dominate the debate on the career impacts of parenthood; each

addresses one of the two identification challenges, yet they provide conflicting evidence. The

event study approach, popularized by Kleven et al. (2019, 2024), compares labor market

outcomes between women with and without children. While this method accommodates

dynamic effects, it assumes that fertility timing is not selective. The instrumental variable

approach, introduced by Lundborg et al. (2017, 2024), addresses selective fertility by focus-

ing on women undergoing in-vitro fertilization—one type of assisted conception procedure.

This method assumes that the effects do not depend on parenthood timing. Event study

estimates based on Danish data attribute most of the gender inequality in earnings to par-

enthood, while instrumental variable estimates suggest that parenthood has little impact

on gender inequality (Lundborg et al., 2024). Moreover, event study estimates from the

in-vitro fertilization sample are nearly identical to those from the general population. This

complicates attributing differences in results between the two methods to sample differences.

I introduce procedures to assess the potential bias in the leading methods. I begin

by implementing the instrumental variable and event study approaches on Dutch data. I

find that their estimates differ substantially, mirroring findings from Denmark (Lundborg

et al., 2024). Moreover, neither the event study nor instrumental variable estimates fall

within my bounds. However, these differences do not necessarily imply bias because the

three methods target different sub-populations, even when applied to the same dataset. To

quantify the potential bias in the instrumental variable approach, I modify my baseline

method to bound the effects of delaying parenthood. My results suggest that dynamic

effects could either have a limited impact on the instrumental variable estimates or lead to

a substantial underestimation of the career cost of motherhood; neither possibility can be

ruled out without additional assumptions. For the event study approach, I use the timing of

failed ACPs as a proxy for selective fertility timing. I then conduct a placebo event study to

quantify its relationship with labor market outcomes in the absence of children. I find that

selective fertility may lead the event study estimates to overstate both the career costs of

motherhood and the benefits of fatherhood, resulting in an overestimation of parenthood’s

impact on gender inequality.

My work is most closely related to two recent working papers that exploit women’s
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first in-vitro fertilization procedure and carefully address dynamic effects: Bensnes et al.

(2023) and Gallen et al. (2023). These studies rely on parametric assumptions about effect

heterogeneity across women and the structure of dynamic effects. Such assumptions allow

them to use short-run instrumental variable estimates to correct the bias that emerges as

more women become mothers. Compared to this approach, the primary advantage of my

method is that it does not require parametric assumptions. Additionally, my method does

not rely on longitudinal data structure, allowing to estimate impacts on outcomes observed

irregularly or even only once. Leveraging my identification results, I also develop a joint test

for the two parametric assumptions. I find that these assumptions are rejected in my setting.

This procedure can be applied to test alternative assumptions that enable identification.

My work is also linked to the broader literature on the effects of children on gender

inequality in the labor market (see Bertrand (2011); Blau & Kahn (2017) for a detailed

overview). This includes studies that focus on the extensive fertility margin rather than

parenthood itself (Rosenzweig & Wolpin, 1980; Bronars & Grogger, 1994; Angrist & Evans,

1996; Jacobsen et al., 1999; Iacovou, 2001; Cruces & Galiani, 2007; Maurin & Moschion,

2009; Hirvonen, 2009; Vere, 2011). It also includes studies on the effects of parenthood that

rely on assumptions about dynamic effects but address selection by exploiting miscarriages

(Hotz et al., 2005), infertility shocks (Agüero & Marks, 2008; Cristia, 2008), variation in

access to abortion (Miller, 2011; Brooks & Zohar, 2021), and contraceptive failures (Gallen

et al., 2023). Finally, it relates to the growing literature on the effects of parenthood

that addresses dynamic effects but relies on arguably stronger assumptions about selective

fertility, including studies leveraging differences in fertility timing (Fitzenberger et al., 2013;

Angelov et al., 2016; Chung et al., 2017; Bütikofer et al., 2018; Kleven et al., 2019; Eichmeyer

& Kent, 2022; Melentyeva & Riedel, 2023) and structural approaches (Adda et al., 2017).

My primary contribution to the literature on the career impacts of parenthood is pro-

viding estimates that are simultaneously robust to selective fertility and dynamic effects. I

demonstrate that these factors may substantially bias leading estimators, and that account-

ing for them can reconcile conflicting findings in the literature. My secondary contribution

concerns the external validity of my estimates. This study is the first to use intrauterine

insemination and the first to use any ACP data outside of Scandinavia. In doing so, it

mitigates several concerns raised about prior studies that focus solely on in-vitro fertiliza-

tion and use data from Denmark or Sweden. Intrauterine insemination is the primary ACP

in most countries and is less invasive and more accessible than in-vitro fertilization. This

addresses concerns about sample selectivity, (mental) health side effects, and relevance for

countries where in-vitro fertilization access is limited. Additionally, Dutch family policies

align with the OECD average, making my results more relevant for common policy settings.

To address mental health side effects further, I adapt my method to bound career impacts

specifically for women who do not uptake antidepressants after failing to conceive. I further

address sample selectivity by introducing a procedure to estimate effects for non-ACP par-
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ents by imputing their childless career trajectories from families who attempted but failed

to conceive via ACPs at a similar moment. Estimates from both methods remain consistent

with my baseline results.

Methodologically, my approach builds on ideas from two distinct branches of literature.

The first step of my approach, which accounts for selection into parenthood via subsequent

ACPs, leverages insights from the extensive biostatistics literature on dynamically assigned

treatments (see Hernán & Robins (2020) for an overview). In economics, it is most closely

related to a procedure developed by Van den Berg & Vikström (2022), which explicitly in-

corporates treatment assignment eligibility. These methods are inapplicable in my setting

because individuals may take up treatment without assignment, conceiving via non-ACP

means. The second step of my approach, which addresses selection into parenthood through

non-ACP means, relates to the extensive literature on bounds for treatment effects, begin-

ning with Manski (1989, 1990). It is most closely related to a procedure typically used to

account for sample selection, introduced by Zhang & Rubin (2003) and further developed by

Lee (2009) (henceforth ZRL). While sample selection is conceptually distinct from dynamic

effects, the ZRL method can be adapted to bound the effects of parenthood in my setting.

My approach, which leverages women’s entire ACP histories before resorting to bounding,

offers two advantages. First, it allows to bound the effects for a more general group—women

reliant on ACPs to conceive, rather than only those reliant on their first ACP. Second, it re-

sults in mechanically narrower bounds. I demonstrate that, in my application, ZRL bounds

are at least several times wider, making them uninformative. I present a detailed discussion

of how my approach relates to and differs from these methods in Section 3.4.

My primary contribution to the methodological literature is an approach to bound treat-

ment effects in settings with quasi-experimental treatment assignment but imperfect com-

pliance. Particularly, in cases where individuals transition from the originally assigned state

either by undergoing multiple quasi-experimental assignments or through entirely selective

pathways. While in my application these states represent entering parenthood at different

points in time, they could also correspond to entirely different treatments. Examples in-

clude educational programs with multiple admission cycles, job training programs where

unassigned individuals can reapply for alternative programs, legal settings where sanctions

are applied non-deterministically and initially unsanctioned individuals may later be sanc-

tioned, and clinical trials in the extension phases where participants can enroll in other trials

or pursue alternative therapies. My secondary contribution is addressing another limitation

of the instrumental variable approach when estimating impacts on one outcome over time.

Specifically, the group for which effects are identified may change, complicating interpreta-

tion even when impacts do not depend on the timing of treatment. After introducing my

method, I demonstrate how it can be used to quantify effects over time for a stable group.

The rest of the paper is structured as follows. Section 2 introduces the potential out-

comes framework. Section 3 demonstrates the identification challenge, presents intuition
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for the bounding approach, states the formal results, and discusses relations to existing

methodological literature. Section 4 introduces the estimator. Section 5 describes the in-

stitutions, ACPs, and the data, and presents support for the identification assumptions.

Section 6 presents the main estimates of the effects of parenthood on women’s labor mar-

ket outcomes and gender inequality. Section 7 covers extensions, including assessing the

bias in existing approaches, addressing external validity concerns related to mental health,

quantifying the effects over time for a stable group of individuals, and assessing the effects

of parenthood in the general population. Section 8 concludes.

2 Model

In this section, I introduce a static model sufficient to demonstrate the identification chal-

lenge and the bounding approach without loss of generality. I generalize it to a dynamic

version to present extensions in Section 7. The model is a modified version of the local

average treatment effect (LATE) framework (Angrist & Imbens, 1995). D is a treatment

indicator, which may be selective, representing whether a woman has any children. Z1 is

the treatment assignment indicator, representing whether a woman’s first ACP succeeded.

The population consists of women who underwent ACP for their first child.

When Z1 is as good as randomly assigned and affects the outcome Y only through D

(and affects D for at least some women), it is a valid instrument for D. In the context

of parenthood, a concern is that Z1 may affect Y through parenthood timing independent

of parenthood status because women who become mothers through their first ACP have

children earlier than those who become mothers after their first ACP fails. To formalize this

concern, I distinguish three potential outcomes. Y (1) is the potential outcome in the case

that a woman becomes a mother at the first ACP; I refer to it as the treated outcome. Y (0) is

the potential outcome in the case that a woman remains childless; I refer to it as the control

outcome. Y (2) is the potential outcome in the case that a woman becomes a mother after

the first ACP fails; I refer to it as the later-treated outcome. The key feature complicating

identification is that Y (1) may differ from Y (2); the exact meaning or uniqueness of Y (2) is

irrelevant for the bounding approach I propose.1 Formally, the relationship between realized

and potential outcomes is:

Y = Y (0)(1−D) + Y (1)DZ1 + Y (2)D(1− Z1).

Most women whose first ACP fails undergo ACPs again, and my method leverages

variation in parenthood resulting from the outcomes of these subsequent ACPs. To formalize

this, I extend the LATE framework to describe how parenthood status depends not only

1The approach does not use realized later-treated outcomes; I require SUTVA for Y (1) and Y (0).
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on the outcome of a woman’s first ACP but also on the outcomes of subsequent ACPs.2

I characterize each woman by two unobserved variables. First, W ∈ {1, . . . , w}, which is

the total number of ACPs a woman would undergo for her first child if all previous ACPs

failed. I refer to W as the willingness to undergo ACPs, although it only describes women’s

behavior in the scenario that all ACPs fail and does not require any broader interpretation.

W may be related to potential outcomes. Second, R, which indicates if a woman would

remain childless if all W ACPs failed. I refer to R as reliance on ACPs. It may be related

to both the potential outcomes and the willingness to undergo ACPs. I refer to women with

R = 1 as reliers, meaning that they are reliant on ACPs to have children, and women with

R = 0 as non-reliers, meaning that they would have children even if all ACPs failed.

Reliers are the focus of this paper. They are the most general group of women whose

parenthood status depends on ACP success, and such dependency is essential for obtaining

informative results.3 Reliers are closely related to compliers in the LATE framework, which

are the women who would remain childless if their first ACP failed. However, reliers are

a more general group, meaning that compliers are a subset of reliers. This is because, in

addition to compliers, reliers also include women who would become mothers through a

subsequent ACP if the first ACP failed but would remain childless if all ACPs failed; such

women are part of the always-takers in the LATE framework. There are no never-takers or

defiers because few women who conceive via ACPs end up childless, but all results can be

extended to a setting with never-takers.

The observed indicator for the success of ACP j is Zj . It takes the value 1 if the

ACP succeeded, and 0 either if the ACP failed or if a woman did not undergo ACP j. To

simplify notation, this only includes ACPs that occur before the first child. All women who

experience ACP success have at least one child, which implies that indicators for the success

of ACPs following another successful ACP take the value 0. In the case that all previous

ACPs fail, women undergo at most as many ACPs as they are willing to. Formally:

Zj = 0 for all j such that (Zl = 1 for any l < j) or (W < j).

The total number of ACPs a woman undergoes is A, and it is also observed. A woman

undergoes ACPs either until one succeeds or until she reaches the maximum number of

ACPs she would undergo if all previous ACPs failed. Formally:

A = min ({j : Zj = 1} ∪ {W}) .

By definition, among women who never experienced ACP success, the realized number of

2More generally, control group individuals can selectively enter a sequence of quasi-experiments, gaining
additional chances for treatment assignment, and may also obtain treatment without assignment.

3When outcomes have bounded support, effects for all women, including non-reliers, can be bounded
using Horowitz & Manski (2000), but these bounds may be uninformative. In my application, seven years
post-conception, such bounds on hours range from an 80% reduction to a 70% increase.
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ACPs equals the number of ACPs a woman would undergo if all ACPs failed. A woman is

a mother either if her last ACP succeeded or if she is a non-relier and had a child after all

ACPs failed. Formally, the outcome of the last ACP a woman underwent is ZA, and the

relationship between the parenthood indicator and ACP success is:

D = ZA + (1− ZA) (1−R) .

The main effect I focus on is becoming a parent at the first ACP relative to remaining

childless. I discuss other effects in Section 7. The individual-level treatment effect is defined

as the difference between the treated and control outcomes:

τ = Y (1)− Y (0).

The average treatment effect (ATE) is:

τATE = E[τ ].

The central parameter I focus on is the average treatment effect for reliers (ATR):

τATR = E[τ |R = 1].

For comparing my approach to the instrumental variable method, the local average treat-

ment effect (LATE) is:

τLATE = E[τ |C = 1],

where C is the complier indicator, which takes the value 1 if a woman would remain childless

if her first ACP failed, and 0 otherwise.

3 Identification

In this section, I first describe the limitations of the intstrumental variable (IV) approach.

Then, I present the intuition behind my approach, followed by formal results. Afterward, I

discuss how my approach relates to the existing methodological literature.

To demonstrate the intuition, I leverage the (unconditional) sequential unconfounded-

ness assumption:

Assumption 1 (Sequential Unconfoundedness).

(Y (k), R,W ) |= Zj | A ≥ j, for all j, k.

It states that, among women who enter ACP j, the outcome of ACP j is as good as random;

specifically, it is independent of potential outcomes and type. The intuitive idea behind this

assumption is that among women whose previous ACPs have failed and who undergo an
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additional insertion of embryos or sperm into the uterus, whether or not they get pregnant

from this insertion is essentially random. This assumption concerns only the last stage of

each ACP and not the earlier stages that may lead up to it, such as hormonal stimulation

or, in the case of IVF, embryo fertilization in the lab. It does not restrict the relationship

between potential outcomes and selection into subsequent ACPs, nor does it limit the

relationship between potential outcomes and selection into parenthood via non-ACP means.

To simplify exposition, I do not distinguish between IVF and intrauterine insemination in

this section, but the main identification method accounts for procedure-dependent success

rates and selection into different procedures. I present empirical evidence to support the

sequential unconfoundedness assumption in Section 5.3.

3.1 Bias in the Instrumental Variable Approach

The IV approach uses the success of women’s first ACP as an instrument for parenthood.

It starts with the reduced form, which is the difference in average outcomes between those

whose first ACP succeeded and those whose first ACP failed. This means a group of women

who conceived on their first ACP is compared to a mixed group consisting of childless women

(the compliers) and women who had children later (the always-takers). Under (sequential)

unconfoundedness, the reduced form identifies a linear combination of two effects. First,

the average treatment effect for compliers, and second, the effect of conceiving earlier versus

later for always-takers:

E[Y |Z1 = 1]− E[Y |Z1 = 0] =E[Y (1)− Y (0)|D = 0, Z1 = 0]Pr(D = 0|Z1 = 0)

+ E[Y (1)− Y (2)|D = 1, Z1 = 0]Pr(D = 1|Z1 = 0).

Scaling the reduced form by the difference in the share of mothers between the two groups—

the first stage—yields:

E[Y |Z1 = 1]− E[Y |Z1 = 0]

E[D|Z1 = 1]− E[D|Z1 = 0]
=τLATE + E[Y (1)− Y (2)|C = 0]

Pr(C = 0)

Pr(C = 1)
.

The second term on the right-hand side is the average effect of becoming a mother earlier

relative to later for always-takers, scaled by the always-taker-to-complier ratio. When the

outcomes do not depend on the moment of becoming a mother, meaning Y (1) = Y (2), the

second term drops out, and τLATE is identified. In the standard Rubin (1974) model with

only one motherhood outcome, this assumption is covered by the no-multiple-versions-of-

treatment (SUTVA). Otherwise, the second term biases the IV estimator of τLATE .
4

4Another way to describe this bias is by using the “negative weights” terminology popularized by the
recent literature on difference-in-differences (see Roth et al. (2023) for on overview). For example, when the
always-taker-to-complier ratio is 3, the IV estimator can be thought of as assigning a weight of 4 to τATE

and a weight of −3 to the average effect of delayed parenthood for always-takers, E[Y (2) − Y (0)|C = 0].
Difference-in-differences methods are inapplicable in this setting because parenthood timing may be selective.
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In the context of parenthood, the theoretical direction of the bias is ambiguous. On the

one hand, it may understate the career costs of motherhood if women who have children

later face greater child care demands at the peak of their careers, when their work hours

and earning potential are highest. On the other hand, it could overstate the costs if women

who become mothers earlier miss crucial career-building years, have more children, or lack

the resources to access formal child care, all of which may negatively affect their long-term

career trajectory. Even when the effect of becoming a mother earlier is small relative to the

treatment effect, the bias may be large due to the relative size of the always-taker group.

In practice, four years after the first procedure, the always-taker-to-complier ratio is 3.

3.2 Intuition for Bounding Approach

In this section, I present the intuition behind my bounding approach. I separately explain

how I identify the relier average control outcome and bound their average treated outcome,

how I leverage pre-ACP covariates to make the bounds sharp, and how I tighten them using

additional assumptions.

3.2.1 Control Outcome

To demonstrate how the relier average control outcome can be identified, I first express it as

a weighted average of childless outcomes among reliers with different willingness to undergo

ACPs:

E[Y (0)|R = 1] =
w∑

w=1

E[Y (0)|R = 1,W = w] Pr(W = w|R = 1).

I next describe how each element in the sum can be identified. First, the average outcome

among women who underwent exactly w ACPs and remained childless identifies the average

control outcome for reliers willing to undergo exactly w ACPs:

E[Y |A = w,D = 0] = E[Y (0)|W = w,R = 1].

This result holds because, among childless women, the control outcome is observed, and

women who underwent exactly w ACPs and remained childless are a random subsample of

reliers willing to undergo exactly w ACPs. This follows from two key observations. First,

all women who undergo exactly w ACPs and remain childless must be reliers willing to

undergo exactly w ACPs, as non-reliers would have had children, and reliers willing to

undergo additional ACPs would have done so. Second, conditional on being willing to

undergo w ACPs and being a relier, whether a woman undergoes w ACPs and remains

childless is effectively random: it depends solely on whether any ACP up to w succeeds,

and the outcome of each ACP is as good as random.

The shares of different types can be identified following similar arguments. First, women
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who experience at least w failed ACPs are a random subsample of women willing to undergo

at least w ACPs, hence, the share of such women initiating a subsequent ACP identifies the

share of women willing to undergo at least w + 1 ACPs in this group:

Pr(A ≥ w + 1 | A ≥ w,Zw = 0) = Pr(W ≥ w + 1 |W ≥ w). (1)

Second, women who do not undergo an additional ACP after their previous w ACPs fail

are a random subsample of women willing to undergo exactly w ACPs, hence, the share

of such women who remain childless identifies the share of women reliant on ACPs in this

group:

Pr(D = 0 | A = w,Zw = 0) = Pr(R = 1 |W = w). (2)

Combining these probabilities allows to construct Pr(W = w,R = 1) for all w, meaning

that the shares of all types are identified.

An important special case arises when women conceive solely through ACPs, making all

women reliers. In this scenario, the above approach identifies the average control outcome.

Combining it with the average treated outcome identified from women whose first ACP

succeeded allows to point-identify τATE . However, if some women become mothers inde-

pendent of ACP outcomes, point-identifying τATE without additional assumptions becomes

impossible, as control outcomes for such women can never be observed. Moreover, since

treated outcomes are only observed among women who conceived through their first ACP

and it cannot be determined which of these women are reliers, the relier average treated

outcome cannot be identified either. This prevents the point identification of τATR. Next, I

describe how the relier average treated outcome can be bounded to obtain bounds on τATR.

3.2.2 Treated Outcome

I bound the relier average treated outcome using the distribution of outcomes among women

whose first ACP succeeded. Since the success of the first procedure is as good as random,

this distribution reflects the treated outcomes of all women entering ACPs. Combined with

the relier share identified in the previous step, this allows to construct worst-case bounds

for the relier average treated outcome by assuming they either have the lowest or highest

treated outcomes of all women entering ACPs.

To illustrate the intuition, suppose there are 100 women whose first ACP succeeded,

and the first step identifies that 80% of women are reliers. Then, by unconfoundedness,

there are approximately 80 reliers among the 100 women, and their expected outcome is

the same as the relier average treated outcome. While it is not known which 80 out of

the 100 women are the reliers, the upper bound on their average treated outcome can

be constructed by selecting the 80 women with the highest outcomes. Panel A in Figure

1 graphically demonstrates this intuition using 100 women whose treated outcomes are
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uniformly distributed between 1 and 100. The left graph illustrates excluding the 20 women

with the highest outcomes to identify the lower bound by averaging outcomes among the

remaining 80 women. The right graph repeats this for the upper bound. The true location

of the 80 reliers must be between these two extremes, meaning their average treated outcome

must be between the averages of the two trimmed distributions.

3.2.3 Narrowing Bounds with Pre-ACP Covariates

When ACP success is as good as random conditional on pre-ACP covariates, these covari-

ates can be used to narrow the bounds without additional assumptions. To illustrate the

intuition, suppose there are 100 women whose first ACP succeeded, and that before ACP,

80 of them had low levels of education, while 20 were highly educated. Since ACP outcomes

are as good as random conditional on observables, the baseline approach allows to identify

the relier share within each pre-ACP education group. Suppose the first step identifies that

in each groups, 80% of the women are reliers. This means that out of the 80 reliers among

the 100 women whose ACP succeeded, 16 should be highly educated, and 64 should have

low levels of education. Constructing the bounds without accounting for this information

may lead to selecting women in a way that is inconsistent with these shares, making the

baseline bounds overly conservative. The new lower bound is constructed by selecting the

corresponding number of women with the lowest outcomes from each education group. This

can only result in a weakly higher lower bound compared to selecting the 80 women with the

lowest outcomes, without taking education into account. Panel B in Figure 1 illustrates this

intuition graphically, where, for simplicity, I assume all highly educated women have higher

outcomes than all women with low levels of education. The left panel trims 4 women with

the highest outcomes from the highly educated group and 16 with low levels of education,

corresponding to 20% non-reliers in each group. This results in trimming fewer women with

high outcomes and, in turn, a higher average outcome among the remaining women than

in the scenario where education is ignored. The right panel applies the same reasoning to

the upper bound, resulting in a lower upper bound.

3.2.4 Narrowing Bounds with Post-ACP Outcomes

The bounds can be narrowed further with additional information on which women whose

first ACP succeeded are (or are not) reliers. One such piece of information might be women’s

fertility outcomes beyond the first birth. For instance, it could be reasonable to assume

that women who had non-ACP children after their first ACP succeeded would have also

had at least one non-ACP child if all ACPs had failed. To illustrate the intuition, suppose

there are 100 women whose first ACP succeeded and, for simplicity, abstract from pre-ACP

covariates discussed in the previous section. Further suppose that in addition to identifying

that 80% of the 100 women are reliers, as before, 10 of the 100 are observed to have a

second non-ACP child. It is guaranteed that these 10 women are not reliers and they can
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Figure 1: Intuition for Bounds
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be excluded before selecting the 80 potential reliers to construct the bounds. Panel C in

Figure 1 demonstrates this intuition graphically. In both the left and right figures, the

10 women who had a second child without ACPs are excluded first. In the left panel,

an additional 10 women with the highest outcomes are excluded to construct the lower

bound by averaging the outcomes among the remaining 80 women. The right panel repeats

this process for the upper bound. The new bounds are strictly narrower than the baseline

because the exclusion of the 20 women is less extreme: 10 of the same women are excluded

for both the lower and upper bounds.

Formally, R+ is an indicator for a woman’s reliance on ACPs for additional children

after becoming a mother through her first ACP. Specifically, R+ takes the value 1 if, in the

case that her first ACP succeeds, a woman would have only ACP children, and 0 otherwise.

I refer to women who rely on ACPs for all subsequent children as subsequent reliers. R+ is

assumed to be independent of the success of a woman’s first ACP in the same way as R.

D+ is an indicator for having at least one non-ACP child, defined as:5

D+ = ZA(1−R+) + (1− ZA)(1−R).

In words, a woman has at least one non-ACP child either if an ACP succeeded and she is

not a subsequent relier, or if all ACPs failed and she is not a relier.6

Assumption 2 (Monotonicity).

Pr(R+ ≥ R) = 1.

The monotonicity assumption states that women who would have additional non-ACP chil-

dren in the scenario that their first procedure succeeds would also have at least one child in

the scenario that all ACPs fail. This is consistent with families being more determined to

have at least one child than to have additional children after the first one. This assumption

might be violated when the success of the first ACP causes some couples to stay together

instead of separating or prevents some women from becoming depressed, which leads to

more effort to conceive and results in non-ACP births that would not have happened other-

wise. I relax the assumption to address such violations in Section 7.3 and provide empirical

support for both versions of the assumptions afterward.7

3.3 Sharp Bounds on Relier Average Treatment Effect

In this section, I formalized and combine ideas introduced in Section 3.2 to bound τATR.

Before stating the formal results, I relax the sequential unconfoundedness assumption to its

5To minimize notation, I do not distinguish between reliance on ACPs for subsequent children after
becoming a mother through the first or subsequent ACPs; only the former is relevant for my analysis.

6It implies that women with at least one non-ACP child also have at least one child (D ≥ D+), and if
ACPs fail, having a child is equivalent to having a non-ACP child (D = D+ | ZA = 0).

7The remaining theoretical results are presented assuming monotonicity; re-defining R+ to always take
the value 1 and D+ to take the value 0 when Z1 = 1 makes it equivalent to the case without monotonicity.
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conditional counterpart:

Assumption 3 (Conditional Sequential Unconfoundedness).

(Y (k), R+, R,W ) |= Zj | Xj for all j, k, and Xj ∈ X 1
j = {x ∈ Xj : 1{A≥j} = 1}.

Where Xj are covariates at the time of ACP j, with support Xj . They include an indicator

for whether the woman has undergone at least j ACPs, 1{A≥j}. Covariates specific to ACP

j are set to 0 if the woman does not undergo ACP j.8 In words, the success of ACP j is

independent of potential outcomes and type, conditional on undergoing at least j ACPs

and covariates at the time of ACP j. The next assumption provides regularity conditions.

Let ej(x) = Pr(Zj = 1 | Xj = x).

Assumption 4 (Regularity).

1. 0 < e < ej(x) < e < 1 for all j and x ∈ X 1
j , for some fixed e and e.

2. Y has a probability density function for Z1 = 1, D+ = 0, and all x ∈ X1.

The regularity assumption contains two parts. First, the probability of ACP success

conditional on undergoing the procedure and covariates at the time differs from 0 and 1.

Second, Y is a continuous random variable conditional on the first ACP succeeding, having

only ACP children, and every value of X1. Note that since an ACP cannot succeed unless

a woman initiates the procedure, ej(x) = 0 for all j and x ∈ Xj \ X 1
j .

The bounding procedure begins with identifying several nuisance functions involved

in the trimming step. First, the covariate-conditional relier share is identified using the

weighted share of women without children among those whose ACPs failed:

r(x) = E

[
(1−D+)

∏w
j=1(1− Zj)∏w

j=1(1− ej(Xj))

∣∣∣∣∣X1 = x

]
.

Since ej(xj) takes values above zero only for women who undergo ACP j, larger weights

are given to women who underwent more ACPs. This accounts for the fact that women

willing to undergo more ACPs are less likely to not experience ACP success, making them

underrepresented in this group. Next, the covariate-conditional share of subsequent reliers

is identified from the share of women having only ACP children among those whose first

ACP succeeded:

r+(x) = E
[
1−D+ | Z1 = 1, X1 = x

]
.

The covariate-specific share of reliers among subsequent reliers is then given by:

p(x) =
r(x)

r+(x)
.

8For j > 1, Xj also includes covariates from previous ACPs.
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The covariate-conditional quantile function of the treated outcome distribution among sub-

sequent reliers is identified from the outcome distribution among women whose first ACP

succeeded and who have only ACP children:

q(u, x) = inf
{
q : u ≤ Pr(Y ≤ q | X1 = x, Z1 = 1, D+ = 0)

}
.

Finally, q(p(x), x) and q(1−p(x), x) identify the covariate-conditional p(x)-th and 1−p(x)-
th quantiles of the treated outcome distribution among subsequent reliers. These quantiles

will be used to trim the tails of the outcome distribution and select reliers in the scenarios

where they have either the lowest or the highest treated outcomes.

The nuisance functions are combined with the data to construct the following moments:

mL(G, η0) = Y (1−D+)1{Y <q(p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)

w∏
j=1

(1− Zj)

(1− ej(Xj))

mU (G, η0) = Y (1−D+)1{Y >q(1−p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)

w∏
j=1

(1− Zj)

(1− ej(Xj))
,

where G is a vector containing all observed variables and η0 contains the nuisance functions:

η0(x1, . . . , xw) = {r+(x1), r(x1), q(p(x1), x1), q(1− p(x1), x1), e1(x1), . . . , ew(xw)}.

The first term in mL(G, η0) assigns positive weights to outcomes of women whose first

ACP succeeded, who have only ACP children, and whose outcomes fall below the covariate-

conditional trimming threshold q(p(x), x). Higher weights are given to women whose first

ACP was less likely to succeed, accounting for their under-representation in this group. This

term will be used to identify the average relier treated outcome in the scenario that they

have the lowest treated outcomes. The second term assigns positive weights to outcomes

of childless women whose ACPs failed. Larger weights are given to women who underwent

more ACPs to account for the fact that reliers willing to undergo more ACPs are less likely

to not experience ACP success, making them underrepresented in this group. This term

will be used to identify the average relier control outcome. mU (G, η0) mirrors this for the

scenario that reliers have the highest treated outcomes. Finally, the moments are scaled by

the relier share.

Theorem. Under assumptions 2, 3, and 4, sharp lower and upper bounds on τATR are θL

and θU , where:

θL =
E[mL(G, η0)]

E[r(X1)]

θU =
E[mU (G, η0)]

E[r(X1)]
.
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3.4 Relation to Methodological Literature

My method extends and integrates ideas from two distinct branches of methodological

literature. The first step of my approach, which addresses selection via subsequent ACPs,

builds on the literature on evaluating time-varying treatments (see Hernán & Robins (2020)

for an overview). These methods are typically designed for settings where individuals are

exposed to sequences of treatment regimes, with assignment to each subsequent treatment

being quasi-random, conditional on the outcome and treatment history at the assignment

moment. They are most applicable in experimental settings where the researcher controls

the treatment assignment mechanism. In my setting, treatment assignment is equivalent

to conceiving via ACPs; however, women may also become mothers through potentially

selective non-ACP means, which renders these methods unsuitable.

Even in the absence of such selective treatment, another subtle but important difference

lies in the model of the treatment assignment mechanism. Specifically, a central feature

of my model is the potentially endogenous decision to enter each subsequent ACP, which,

upon entry, induces quasi-random treatment assignment. This implies that women who do

not initiate an additional ACP cannot be assigned treatment. It distinguishes my setting

from one in which all individuals have a non-zero probability of being assigned to different

regimes. In this regard, my model is most related to the one considered by Van den Berg

& Vikström (2022), where individuals start in an eligibility state and have a chance to be

assigned treatment each period until they either receive it or permanently exit the eligibility

state (and remain untreated). My model differs in that treatment is not assigned at specific

moments among those still eligible; instead, the likelihood of assignment depends on when

and how many times individuals choose to pursue it (e.g., undergo ACPs). As a result, there

is no clear duration variable to account for selection; instead, the number of applications,

their timing, and the covariates at the moment of application are the essential factors.

The second component of my approach, which addresses selection via non-ACP means,

is methodologically closely related to the Zhang & Rubin (2003) and Lee (2009) procedure to

handle unobserved outcomes in quasi-experimental settings. While dynamic effects present

a conceptually different challenge from unobserved outcomes, the ZRL approach can be used

to bound τLATE under dynamic effects by treating outcomes among women who become

mothers after their first ACP fails as unobserved. This amounts to identifying the complier

control outcome and share using women whose first ACP failed, and trimming this share

from the tails of the outcome distribution among women whose first ACP succeeded to

bound complier average treated outcome.

My approach differs from ZRL in two significant ways. First, I bound effects for reliers

rather than compliers, which is not possible using the ZRL approach, as it only exploits the

first treatment assignment moment. This is advantageous not only because reliers represent

a more general group—since all compliers are reliers, but not vice versa—but also because

it results in tighter bounds. This occurs because the width of the bounds decreases with
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the size of the group for which the control outcome is identified, and my method identifies

it for reliers rather than compliers.9

The second distinction of my approach is the use of a unique monotonicity assumption

to tighten the bounds. The ZRL approach employs a different monotonicity assumption,

specifically that, in a setting where outcomes are unobserved in both the treated and control

groups, the treatment has a monotonic effect on having an observed outcome. In my

setting, however, the treated outcomes for all women whose first ACP succeeds are observed.

Instead, I use an auxiliary variable—non-ACP conceptions of additional children—to infer

which women are non-reliers. While the economic idea behind my assumption differs, it can

be connected to ZRL model, which enables the use of estimation methods developed for the

ZRL procedure by Semenova (2023) and Heiler (2024), after modifying them to incorporate

the first step of my identification procedure.

4 Estimation

The bounds on τATR can be estimated using the sample averages of mL and mU after plug-

ging in the estimated nuisance parameter. In the case where only a few discrete covariates

are used, the nuisance parameter and the bounds can be estimated jointly using GMM,

and asymptotic normality can be demonstrated by building on results from Lee (2009).

However, incorporating continuous covariates may be crucial for obtaining narrow bounds,

which requires estimating the nuisance parameter non-parametrically. In this case, plugging

in an estimate of η0 into mL and mU will complicate the asymptotic distribution of their

sample averages. To justify asymptotic inference, I build on the estimation approach for

the ZRL procedure introduced by Semenova (2023).

The method by Semenova (2023) involves two key components. The first is orthogonal-

ization, where the baseline moments are modified by including additional terms that ensure

their expectations evaluated at the true nuisance parameter remain unchanged but become

insensitive to small changes in the nuisance parameter. The second is sample splitting,

where the nuisance parameter used for each observation is estimated without that observa-

tion. Together, these components ensure that the asymptotic distribution of the averaged

moments is not impacted by the estimation of the nuisance parameter for a wide class of

non-parametric estimators. This enables inference using standard methods as if the true

nuisance parameter was known.

I modify the Semenova (2023) moments to include the first step of my identification

approach. First, I replace the terms for the complier control outcome and share with

corresponding terms for the relier control outcome and share. These match how the two

parameters are identified in the Theorem, specifically, using outcomes and parenthood in-

9To see this, assume that among 100 women whose first ACP succeeded, 80 are compliers and 90 are
reliers. The lower bound obtained by averaging outcomes among 90 women with the lowest outcomes is
mechanically higher than when averaging among 80 women with the lowest outcomes.
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Table 1: Orthogonal Moment Functions

Moment functions

ψL+(G, ξ0) Y (1−D+)1{Y <q(p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

+q(p(X1), X1)
[
Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

− Z1
e1(X1)

p(X1)(1−D+ − r+(X1))− Z1
e1(X1)

(1−D+)(1{Y <q(p(X1),X1)} − p(X1))
]

−Z1−e1(X1)
e1(X1)

zL+(1, X1)r1(X1) +
∑w

k=1 1{A≥k}Π
k−1
j=1

(1−Zj)

(1−ej(Xj))
ek(Xk)−Zk
1−ek(Xk)

[rk(Xk)βk(Xk)

+q(p(X1), X1)(r1(X1)− rk(Xk))]

ψU+(G, ξ0) Y (1−D+)1{Y >q(1−p(X1),X1)}
Z1

e1(X1)
− Y (1−D+)Πw

j=1
(1−Zj)

(1−ej(Xj))

+q(1− p(X1), X1)
[
Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

− Z1
e1(X1)

p(X1)(1−D+ − r+(X1))− Z1
e1(X1)

(1−D+)(1{Y >q(1−p(X1),X1)} − p(X1))
]

−Z1−e1(X1)
e1(X1)

zU+(1, X1)r1(X1) +
∑w

k=1 1{A≥k}Π
k−1
j=1

(1−Zj)

(1−ej(Xj))
ek(Xk)−Zk
1−ek(Xk)

[rk(Xk)βk(Xk)

+q(1− p(X1), X1)(r1(X1)− rk(Xk))]

ψ−(G, ξ0) Y (1−D+) Z1
e1(X1)

p(X1)− Y (1−D+)Πw
j=1

(1−Zj)

(1−ej(Xj))

−β+(X1)
[

Z1
e1(X1)

(1−D+−r+(X1))

r+(X1)
r1(X1)−Πw

j=1
(1−Zj)

(1−ej(Xj))
(1−D+ − r1(X1))

]
−Z1−e1(X1)

e1(X1)
β+(X1)r1(X1) +

∑w
k=1 1{A≥k}Π

k−1
j=1

(1−Zj)

(1−ej(Xj))
ek(Xk)−Zk
1−ek(Xk)

[
rk(Xk)βk(Xk)

+β+(X1)(r1(X1)− rk(Xk))
]

ψR(G, ξ0) r1(X1) + (1−D+ − r1(X1))Π
w
j=1

(1−Zj)

(1−ej(Xj))

+Σw
k=11{A≥k}Π

k−1
j=1

(1−Zj)

1−ej(Xj)
(ek(Xk)−Zk)
1−ek(Xk)

[r1(X1)− rk(Xk)]

Nuisance functions

ξ0(x1, . . . , xw) {e1(x1), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1), q(1− p(x1), x1),
β1(x1), . . . , βw(xw), β

+(x1), z
U+(x1), z

L+(x1)}
rk(x) E[(1−D+)/(ΠA

j=k+1(1− ej(Xj))) | Xk = x, ZA = 0]
E[ΠA

j=k+1(1− ej(Xj)) | Xk = x, ZA = 0]
βk(x) E[Y/(ΠA

j=k+1(1− ej(Xj))) | Xk = x,D = 0]
E[ΠA

j=k+1(1− ej(Xj)) | Xk = x,D = 0]
β+(x) E[Y | X1 = x, Z1 = 1, D+ = 0]
zU+(x) E[Y | X1 = x, Z1 = 1, D+ = 0, Y ≥ q(1− p(x), x)]
zL+(x) E[Y | X1 = x, Z1 = 1, D+ = 0, Y ≤ q(p(x), x)]

dicators among women who never experience ACP success, with weights that depend on

the number of ACPs and the propensity score at each ACP, ej(Xj). Since this makes the

moments sensitive to the propensity scores, I add additional terms to correct for it. These

terms account for the use of the scores in estimating the relier average control outcome

and the relier share. The new moments for the lower and upper bounds ψL+(G, ξ0) and

ψU+(G, ξ0), and the nuisance parameter ξ0 are given in Table 1.

The new moments identify the same parameters as the baseline moments:

E[ψL+(G, ξ0)] = E[mL(G, η0)], E[ψU+(G, ξ0)] = E[mU (G, η0)].

However, the old moments are sensitive to small errors in the nuisance parameter, whereas

the new moments are not. For example, for some j, let êj(xj) be an estimate of the propen-

sity score ej(xj) such that êj(xj) ̸= ej(xj) for xj ∈ X 1
j . Define r ∈ [0, 1) → ψU+(G, r) ≡
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ψU+(G, ξr), where:

ξr = {e1(x1), . . . , el(xl, r), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1),

q(1− p(x1), x1), β1(x1), . . . , βw(xw), β
+(x1), z

U+(x1), z
L+(x1)},

and where el(xl, r) = el(xl) + r(êl(xl) − el(xl)), meaning that el(xl, 0) = el(xl). Then for

the new moment:

∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 a.s.,

while for the original moment:

∂r E[mU (G, ηr)|Xl]|r=0 ̸= 0 a.s.,

meaning that the old moment is sensitive to the estimation error in êj(Xj), whereas the

new one is not. I present the derivation of these results in Appendix A2.

A challenge that may arise when implementing the bounds under a non-trivial mono-

tonicity assumption is that, when the relier and subsequent relier shares for some values of

X1 are very close, the estimated shares reverse order. In my main specification, I treat such

cases as if the two shares were equal, with the corresponding moment ψ−(G, ξ0) given in Ta-

ble 1. I discuss this in detail, introduce an alternative approach that allows the direction of

monotonicity to vary with covariates following Semenova (2023), and present results based

this approach in Appendix A3. I also replace the denominator moment with an orthogonal

counterpart ψS(G, ξ0), given in Table 1.

The estimators for the lower and upper bounds are:

θ̂L =

∑
i

(
ψL+(Gi, ξ̂i)1{p(X1)≤1} + ψ−(Gi, ξ̂i)1{p(X1)>1}

)
∑

i ψ
R(Gi, ξ̂i)

θ̂U =

∑
i

(
ψU+(Gi, ξ̂i)1{p(X1)≤1} + ψ−(Gi, ξ̂i)1{p(X1)>1}

)
∑

i ψ
R(Gi, ξ̂i)

,

where Gi is the data for observation i and ξ̂i is the nuisance parameter for observation i,

estimated on a subsample that excludes observation i. I discuss implementation in detail

in Appendix A4.10 In Appendix A5, I also introduce a new method to estimate non-sharp

10I estimate the propensity scores using logistic regressions that include quadratic functions of each
partner’s age at the time of the procedure, interacted with procedure type and higher education dummies,
based on women who initiate the respective ACP. I consider the first ten ACPs that women undergo, treating
conceptions through other ACPs as non-ACP conceptions. I estimate remaining nuisance functions using
Generalized Random Forests for conditional expectations and quantiles (Athey et al., 2019); covariates
include all those in the propensity scores up to the current ACP, as well as women’s and their partner’s
pre-ACP income and work hours. Following Heiler (2024), I base confidence intervals for the bounds on
Stoye (2020).
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bounds that leverages continuous covariates without requiring non-parametric estimation.

The estimates from this method are very similar to my main results. This new procedure

can also be applied to leverage continuous covariates in standard ZRL setting.

5 Institutions, Assisted Conception Procedures, and Data

In this section, I first describe Dutch family policies and the labor market context. Then, I

discuss IVF and intrauterine insemination, and the differences between them. Afterward, I

overview the data, provide empirical support for the sequential unconfoundedness assump-

tion, and compare the ACP sample to the general population.

5.1 Family Policies in the Netherlands

Dutch women are entitled to 4 to 6 weeks of pregnancy leave before the estimated due

date and at least 10 weeks of maternity leave after giving birth. The total leave must

sum up to at least 16 weeks.11 During this leave, women receive 100% of their wage from

the unemployment insurance agency (up to a maximum daily limit). Fathers are entitled

to one week of leave within the first four weeks after birth at a 100% replacement rate,

which is paid by the employer.12 Children may be enrolled in private daycare centers as

young as three months. In 2022, 72% of children under two were enrolled in formal child

care. Among enrolled children, the average time spent in child care was 20 hours per week

(OECD, 2023a). After turning four and starting elementary education, children become

eligible for out-of-school care. In 2023, the average child care cost per family was 8,950

euros, and parents were reimbursed for 64% of that amount. This translates to an average

net cost per family that is equivalent to 10% of the median disposable household income.13

Compared to other OECD countries, the Netherlands has average family policies. Pa-

ternity and maternity leave durations are slightly below the OECD averages of 2.5 and 21

weeks, respectively (OECD, 2023c). While the Netherlands has the highest formal child

care enrollment rate for children under two among OECD countries, the average time spent

in child care is the lowest (OECD, 2023a). After age four, enrollment rates and average

hours for out-of-school care are similar to those in other OECD countries (OECD, 2022).

While the employment rate for mothers, fathers, and non-parents in the Netherlands is

above the OECD average, part-time work is much more common, making the Netherlands

average in terms of hours worked (OECD, 2023b). In 2021, the maternal employment rate

was around 80%, compared to the OECD average of 71%.14 However, in 2023, 52% of

women and 18% of men worked part-time, defined as less than 30 hours per week, which

11In the case of multiple births, women are eligible for 20 weeks of total leave.
12A reform in 2020 allowed fathers to request up to five additional weeks of leave within the first six

months after birth at a 70% replacement rate; most of the births in the data occurred before this.
13www.cbs.nl/nl-nl/nieuws/2024/30/ouders-betaalden-gemiddeld-3-210-euro-aan-kinderopvang

-in-2023, longreads.cbs.nl/materiele-welvaart-in-nederland-2024/inkomen-van-huishoudens/.
14The EU average was 75% (OECD, 2024).
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is more than double the respective OECD averages (OECD, 2023d). Among two-parent

families, only 14% had both partners working full-time, 52% had a full-time working man

and a part-time working woman, and another 12% had both partners working part-time.15

5.2 Assisted Conception Procedures

I use two types of ACPs: first, IVF, which has previously been used to study the career im-

pacts of parenthood in Denmark and Sweden (Lundborg et al., 2017; Bensnes et al., 2023;

Gallen et al., 2023; Lundborg et al., 2024), and second, intrauterine insemination (IUI),

which has not been used to study the career impacts of parenthood before. In both proce-

dures, the first stage may involve hormonal stimulation to improve egg production. IVF is

a surgical procedure where eggs are retrieved through the vaginal wall using a specialized

needle and fertilized in the lab. In the last stage, the developed embryos are transferred

into the uterus. IVF is relatively invasive, performed under sedation or anesthesia, and has

a success rate (after the embryo transfer) of approximately 25%. In IUI, sperm is injected

directly into the uterus using a catheter. IUI has a lower success rate of approximately

10%; however, it is significantly less costly and invasive than IVF—a procedure may take as

little as 5 minutes and is generally not painful. IUI is the first-line infertility treatment in

most countries. Dutch couples without a specific infertility diagnosis are typically required

to undergo IUI six times before attempting IVF. The compulsory health insurance in the

Netherlands covers unlimited IUI and up to three IVF procedures. In 2022, the price of

each additional IVF cycle was 4,000 euros; however, since multiple embryos can be fertilized

and frozen in a single cycle, additional attempts may only involve unfreezing and inserting

the embryos, costing around 1,000 euros.

5.3 Data

I use administrative data from Statistics Netherlands, which cover all individuals residing

in the country. The data on ACPs cover the period from 2012 to 2017 and are derived

from the Diagnosis-Treatment Combination information system, which Dutch hospitals are

mandated to report to. The main variables for my analysis are the type of procedure—IVF

or IUI—and the date of sperm or embryo insertion into the uterus. I define ACP success as

having a child born within 10 months after the insertion without any subsequent insertions

in between. This definition has been validated against medical records by Lundborg et al.

(2017).

The data on labor market outcomes span the period from 2011 to 2023. The main

outcomes I use are annual work hours and gross labor earnings, both derived from tax

records. Work hours include paid maternity leave. Similarly, gross labor earnings include

maternity pay. While including leave pay accurately reflects women’s financial situation and

income share, incorporating leave duration complicates the interpretation of work hours.

15www.cbs.nl/en-gb/news/2024/10/fewer-and-fewer-families-in-which-only-the-father-works
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To account for this additional uncertainty surrounding actual work hours, I first introduce

maximum-leave-adjusted hours, scaling women’s reported hours in each year they give birth

(including subsequent births) by 36/52. This corresponds to the 16 weeks of unreported

pregnancy and maternity leave that most women could take. In my main analysis, I estimate

the upper bound of the effect using reported work hours and the lower bound using adjusted

hours, which helps ensure that the effect on actual work hours lies within these bounds.

Since existing methods that point-identify the effects do not naturally accommodate such

adjustments, I use the leave-adjusted work hours in supplementary analyses. Using either

measure only meaningfully affects the results in the year following women’s first ACP and

does not impact the comparison of different methods or estimates of the bias.

I also use several demographic variables, including an indicator for completing higher

education, number of children, birth dates, and cohabitation status. My main sample

consists of childless couples who were cohabiting before the woman’s first IUI procedure.

To ensure the first observed ACP is their actual first, I follow Lundborg et al. (2017) and

exclude those whose first observed procedure took place in the first year of the data, as

they likely had prior ACPs. I also exclude those whose first ACP occurred in the last year

to avoid misattributing births from unobserved ACPs in the following year to failed ACPs

in the previous year. These restrictions have little impact on my results. My main sample

consists of 15,523 couples. To compare the ACP sample with the general population, I use

women who were cohabiting with a male partner when they got pregnant with their first

child between 2013 and 2017, without prior ACPs. This group consists of 376,157 couples.

Table 2 compares average characteristics between couples whose first ACP succeeded

(column 1) and couples whose first ACP failed (column 2). Labor market and education

outcomes are measured in the year preceding women’s first ACP. The two groups had similar

average annual earnings. However, women whose first ACP succeeded were working 30

more hours per year, were almost 2 percentage points more likely to be employed, and were

slightly more educated, on average. A similar education gradient in IVF success has been

documented in Denmark by Groes et al. (2024). The results for partners are similar. Most

notably, women and partners whose first ACP succeeded were almost 9 months younger

on average, which is not surprising because age is potentially the most important factor in

ACP success. Following Lundborg et al. (2024), the last column in the table presents the

differences between the two groups after accounting for education and age, which makes the

remaining differences in pre-ACP labor market outcomes negligible. Excluding education

does not change these results. This supports the assumption that the success of women’s

first ACP is conditionally independent of their potential labor market outcomes.

Table 3 presents balance results for subsequent ACPs up to the tenth. Since these ACPs

also include IVF, I additionally control for each partner’s age interacted with treatment

type. This ensures that ACP success only needs to be as good as random among women

who undergo the same procedure (and are of similar age), allowing for selection into IUI or
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Table 2: First ACP Outcomes and Descriptives

Success Fail Difference Dif. cond. age & educ.
(1) (2) (1)-(2) (1)-(2) cond.

Work (W) 0.882 0.863 0.019 0.008
[0.323] [0.344] (0.009) (0.009)

Work (P) 0.884 0.865 0.019 0.013
[0.320] [0.342] (0.009) (0.009)

Hours (W) 1240.315 1207.860 32.455 18.702
[604.666] [635.194] (16.183) (16.560)

Hours (P) 1474.530 1438.590 35.940 18.579
[658.231] [695.692] (17.713) (17.870)

Income 1000s e (W) 28.065 27.418 0.647 0.745
[19.559] [20.219] (0.516) (0.546)

Income 1000s e (P) 37.205 36.952 0.252 0.364
[26.482] [29.452] (0.746) (0.730)

Bachelor deg. (W) 0.480 0.451 0.029
[0.500] [0.498] (0.013)

Bachelor deg. (P) 0.394 0.381 0.013
[0.489] [0.486] (0.012)

Age (W) 31.638 32.388 -0.750
[4.015] [4.383] (0.111)

Age (P) 34.675 35.461 -0.786
[5.513] [5.996] (0.152)

Observations 1,714 13,809

Joint p-val. 0.000 0.928

Note: Labor market outcomes measured year before first ACP. (W) - woman, (P) - partner. Last column
uses inverse prbability weights for the first ACP that follow the main specificaition. Standard deviations in
brackets. Standard errors in parentheses.

Table 3: Balance in Later ACPs

Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Work (W) 0.009 -0.004 0.022 0.014 0.039 -0.003 -0.011 0.022 0.030

(0.010) (0.011) (0.011) (0.012) (0.012) (0.017) (0.018) (0.019) (0.024)

Work (P) 0.006 0.016 0.012 0.020 -0.004 -0.004 -0.019 0.017 0.030

(0.010) (0.010) (0.012) (0.012) (0.015) (0.015) (0.019) (0.020) (0.027)

Hours (W) 32.885 -4.482 52.999 41.332 81.957 11.894 -18.836 72.659 24.819

(18.721) (20.032) (21.045) (22.686) (25.131) (31.187) (32.937) (38.210) (48.490)

Hours (P) 21.655 24.730 23.756 38.965 9.666 -6.580 -28.458 30.525 43.722

(21.018) (21.089) (23.574) (25.255) (30.585) (31.513) (37.976) (44.856) (52.821)

Income 1000s e (W) 1.481 -0.015 1.685 1.802 2.086 0.150 -0.043 0.866 -0.444

(0.615) (0.624) (0.767) (0.830) (0.913) (1.000) (1.092) (1.234) (1.629)

Income 1000s e (P) -0.749 1.002 2.040 0.800 0.774 0.025 0.259 -0.324 0.149

(0.835) (0.912) (1.066) (1.115) (1.424) (1.424) (1.563) (1.737) (2.203)

Observations 12,974 10,774 8,726 6,977 5,411 3,944 2,723 1,850 1,174

Joint p-val. 0.175 0.976 0.234 0.303 0.140 1.000 0.956 0.704 0.917

Note: Each column describes the difference in average characteristics between women for whom the respective ACP succeeds and those for whom it fails,
among those who undergo the procedure, using inverse probability weights for each ACP following the main specification. Labor market outcomes and age
measured year before first treatment. (W) - woman, (P) - partner. Standard errors in parentheses.

IVF based on the woman’s type and potential outcomes. Overall, the results indicate no

systematic differences in pre-ACP outcomes between those with successful and unsuccessful

subsequent ACPs, supporting the conditional sequential unconfoundedness assumption.

Unlike in many other quasi-experimental settings, there is little opportunity for women
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Figure 2: Estimated Success Probabilities

to directly manipulate the outcomes of their ACPs. This means that the primary threat

to the sequential unconfoundedness assumption is that ACP success depends on underlying

health factors, which also affect women’s labor market outcomes. Since health-related

differences can be expected to also be reflected in pre-ACP labor market outcomes, balance

on these outcomes provides relatively strong support for the assumption.

Another threat to the sequential unconfoundedness assumption is that some women

choose to undergo additional ACPs because they have information suggesting the procedures

are more likely to work for them. This may result in the willingness to undergo additional

ACPs, W , being correlated with the ex-ante likelihood of success in previous ACPs. To

test this, I examine how the likelihood of ACP success varies across procedures. To account

for the fact that this likelihood decreases with age, which could obscure any patterns, I

hold covariates fixed at their average levels from the first procedure. The results, presented

in Figure 2, suggest that the conditional likelihood of success in subsequent ACPs among

women who choose to undergo them remains similar to that of all women at their first

ACP. This supports the assumption that the likelihood of ACP success is independent of

the willingness to undergo ACPs.

Before comparing the ACP sample to the non-ACP parents, I present some descriptive

statistics on women’s ACP histories and non-ACP fertility. On average, a woman whose

first ACP fails undergoes an additional 4.1 procedures. The estimated average willingness

to undergo ACP in case of failure, W , is 7.3. Three years after the first ACP, the estimated

relier share is 0.8, decreasing to 0.45 after seven years. For compliers, these shares are 0.4

and 0.25, respectively. The estimated correlation between eventual relier status and the

willingness to undergo ACP is close to zero (although it is not required for the bounding
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Figure 3: ACP Histories and Reliance

approach). Figure 3 presents the realized distribution of the number of ACPs women

undergo, along with the estimated distributions of willingness to undergo ACP and relier

shares, all measured seven years after the first ACP.

Table 4 compares the main sample to a representative sample of mothers, weighted to

match the distribution of birth years for the first child among women whose first ACP suc-

ceeded. Prior to motherhood, women in the representative sample were less likely to work,

worked fewer hours on average, had lower income, and were less educated. The differences

between fathers are similar. After parenthood, both groups have similar average completed

fertility, at 1.8 children. While women whose first ACP succeeded were substantially more

likely to give birth to twins (7% compared to 1.5% in the representative sample), multiple

births were uncommon in absolute terms in both groups.

Although women entering ACPs differ from the representative sample, my analysis fo-

cuses specifically on reliers. Their average pre-ACP characteristics can be identified similar

to their average control outcomes. Column 3 in Table 4 presents estimated average charac-

teristics for women who remained reliers seven years after their first ACP. The last column

compares this group to the representative sample. While reliers were still more likely to

work and had higher income than the representative sample, the differences were substan-

tially smaller than when compared to the whole ACP sample. One notable exception is

age, with relier women being, on average, five years older than those in the representative

sample. This is expected, as women who try to become mothers at an older age are more

likely to remain childless.
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Table 4: Full Sample, Reliers, and Representative Sample

Success Fail Reliers Rep. Success vs rep. Rel. vs rep.
(1) (2) (3) (4) (1)-(4) (3)-(4)

Work (W) 0.882 0.863 0.820 0.801 0.080 0.019
[0.323] [0.344] [0.333] [0.399] (0.010) (0.005)

Work (P) 0.884 0.865 0.849 0.783 0.101 0.066
[0.320] [0.342] [0.344] [0.412] (0.010) (0.005)

Hours (W) 1240.315 1207.860 1117.711 1076.204 164.111 41.508
[604.666] [635.194] [582.334] [696.245] (16.856) (8.412)

Hours (P) 1474.530 1438.590 1390.699 1250.948 223.582 139.752
[658.231] [695.692] [662.920] [793.536] (19.211) (9.576)

Income 1000s e (W) 28.065 27.418 24.976 21.362 6.703 3.615
[19.559] [20.219] [15.359] [18.330] (0.444) (0.222)

Income 1000s e (P) 37.205 36.952 35.299 28.107 9.098 7.193
[26.482] [29.452] [24.304] [29.076] (0.704) (0.351)

Bachelor deg. (W) 0.480 0.451 0.398 0.411 0.069 -0.012
[0.500] [0.498] [0.411] [0.492] (0.012) (0.006)

Bachelor deg. (P) 0.394 0.381 0.329 0.345 0.049 -0.015
[0.489] [0.486] [0.397] [0.475] (0.012) (0.006)

Age (W) 31.638 32.388 33.480 28.713 2.926 4.767
[4.015] [4.383] [3.897] [4.658] (0.113) (0.056)

Age (P) 34.675 35.461 36.580 28.713 5.962 7.868
[5.513] [5.996] [3.928] [4.665] (0.113) (0.057)

Observations 1,714 13,809 4,882 376,152

Note: Labor market outcomes measured year before first ACP for main sample and year and 9 months before birth of first child
for the represenstative sample. Representative sample is selected to match the main sample by year of conception. Average
relier outcomes are based on sample of women who remain childless 7 years after their first ACP with weights described under
implementation. (W) - woman, (P) - partner. Standard deviations in brackets. Standard errors in parentheses.

6 Results

Figure 4 presents the estimated effects on women’s annual work hours and income for

each year, starting from conception.16 In the first year, the bounds indicate a reduction in

women’s work time between 10 and 130 hours, or 1% to 11%, relative to the point-identified

relier average control outcome. The impact on income in the first year is negligible. In years

two and three, the bounds suggest a reduction in work hours between 80 and 400 hours, or

7% to 34%, and a reduction in income between 1,800 and 9,200 euros, or 6% to 32%. The

bounds widen over time, making it impossible to rule out a zero effect on both work hours

and income in the fourth year.

Figure 5 presents the estimated effects on women’s outcomes leveraging the assumption

that those who conceived additional non-ACP children after their first successful ACP would

have conceived at least one child even if all ACPs had failed. The bounds for the effect on

work hours are stable from year 3 to year 7, indicating reductions between 90 and 290 hours,

or 8% to 26%. The bounds for income widen slightly over time; by year 7, they suggest

a reduction between 1,500 and 10,800 euros, or 5% to 34%. Since the bounds without

16The group of reliers changes over time, similar to how the group of compliers changes in the LATE
framework. I extend my method to bound the effects for a stable relier group and present the corresponding
estimates in Section 7.4.
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Figure 4: Effects on Women (without Monotonicity)

−900
−800
−700
−600
−500
−400
−300
−200
−100

0
100
200
300
400
500

1 2 3 4 5 6 7
Time (years)

Hours

−22500
−20000
−17500
−15000
−12500
−10000

−7500
−5000
−2500

0
2500
5000
7500

10000
12500

1 2 3 4 5 6 7
Time (years)

Income

Bounds 95% CI

Figure 5: Effects on Women
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Figure 6: Effects on Men

the monotonicity assumption are only slightly narrower in the early years but remain more

informative later on, I present the remaining results leveraging the monotonicity assumption.

Figure 6 presents the estimated effects on men’s outcomes. The bounds are similar in

width to those for women but are centered around zero. Seven years into parenthood, the

estimates rule out reductions in men’s work hours exceeding 4% and reductions in income

exceeding 16%.

Figure 7 plots the estimated effects on the gaps in outcomes between men and women,

relative to the gaps in their average treated outcomes—in other words, the share of gender

inequality caused by parenthood.17 The results indicate that between year three and year

seven, parenthood caused between 26% and 60% of the gender inequality in annual work

hours and up to 50% of the gender inequality in annual income. The upper bounds for both

outcomes remain stable from year three onward.

Aggregating the upper and lower bounds across periods results in non-sharp bounds on

the cumulative effects. This is because per-period bounds do not account for within-woman

and within-couple outcome relationships over time. To obtain sharp bounds on the share

of gender inequality caused by parenthood during the first seven years, I use cumulative

hours and income over this period as the outcomes in year seven. The results suggest that

parenthood caused between 36% and 54% of gender inequality in work hours, and between

5% and 46% of the inequality in income during this period.

17Using the differences between male and female outcomes ensures the bounds are sharp (see Semenova
(2023)). Notably, they are narrower than those obtained by combining separate lower and upper bounds
for each group, which overlook the within-couple relationship between outcomes. The bounds on the ratio
are calculated using the formula 1− a/b, where a is the point-identified control outcome, and b is either the
lower or upper bound on the treated outcome, all estimated using orthogonal moments.
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Figure 7: Share of Gender Inequality Caused by Parenthood
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Figure 8: Comparison with ZRL Bounds for Effects on Women

I present technical sensitivity analyses for the main results in the appendix. These anal-

yses include applying an alternative monotonicity assumption following Semenova (2023)

(Appendix A3), using a GMM estimator that does not rely on double/debiased machine

learning (Appendix A5), and adjusting for the age difference between partners when esti-

mating the share of gender inequality caused by parenthood (Appendix A6). The estimates

remain largely unchanged.

Before turning to extensions, I compare my bounds with those that rely solely on
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women’s first ACP, which are equivalent to the Zhang & Rubin (2003) and Lee (2009)

bounds. Figure 8 presents the estimated effects on women’s labor market outcomes.18 The

ZRL bounds are considerably wider, failing to rule out both large positive and negative

effects on women’s income and work hours, both in the short and medium run. Seven years

into parenthood, they are 7.1 and 4.7 times wider than my bounds for hours and income,

respectively. The figure also includes bounds that leverage women’s first ACP together with

the monotonicity assumption. These bounds also fail to rule out substantial positive and

negative effects. Seven years into parenthood, they remain 5 and 3.5 times wider than my

bounds for hours and income, respectively.

7 Extensions

In this section, I present extensions to address internal and external validity concerns re-

garding my estimates and to assess the bias in the leading estimators. Section 7.1 generalizes

the model to a dynamic setting. Section 7.2 introduces procedures for assessing the bias in

the IV and event study (ES) estimators. Section 7.3 discusses concerns related to mental

health and relationship breakdowns. Section 7.4 presents extensions to ensure that the

estimates from different periods cover the same sub-population. Section 7.5 discusses het-

erogeneity by effort to conceive. Finally, Section 7.6 introduces an extrapolation procedure

for quantifying the effects in the non-ACP population.

7.1 Dynamic Model

The model introduced in Section 2 is sufficient to demonstrate the identification challenge

and the bounding approach without loss of generality. The objective of generalizing it

to a dynamic version is threefold: first, to highlight the nuances in comparing estimates

across different periods; second, to precisely formalize how outcomes depend on the timing

of parenthood, rather than merely distinguishing between conception at first ACP and

later conceptions; and third, to connect my method to the ES approach, which relies on

the panel data structure. These three features are required to formalize extensions that

ensure estimates from different periods cover the same sub-population, quantify the effects

of delaying parenthood, and assess the magnitude of selective fertility, respectively.

All women start ACP for their first child at time t = 1, ticking up to T . Wt is the total

number of ACPs a woman would undergo by period t to conceive her first child, assuming

all previous procedures fail. Rt takes the value 1 if a woman would be childless in period

t if all ACPs up to that period failed, and 0 otherwise. R+
t takes the value 1 if a woman

would have only ACP children in period t if her first ACP succeeded, and 0 otherwise. Ct

takes the value 1 if a woman would be childless in period t if her first ACP failed, and 0

otherwise. The realized number of ACPs a woman undergoes for her first child by period t

18The alternative bounds are estimated using the baseline approach, ignoring all ACPs after the first one.
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is At:

At = min ({j : Zj = 1, j ≤Wt} ∪ {Wt}) .

I do not index ACP outcomes by time, implicitly assuming that the outcomes of past ACPs

cannot change. Dt takes the value 1 if a woman has any children in period t, and 0 otherwise,

defined as:

Dt = ZAt + (1− ZAt)(1−Rt).

D+
t takes the value 1 if a woman has any non-ACP children in period t, and 0 otherwise,

defined as:

D+
t = ZAt(1−R+

t ) + (1− ZAt)(1−Rt).

Yt(0) is the potential outcome in period t if a woman remains childless. Yt(k) is the potential

outcome if a woman becomes a mother in period k. A woman’s realized labor market

outcome in period t is Yt, and the relationship between potential and realized outcomes is

given by:

Yt = Yt(0)1{DT=0} + Yt(1)1{D1=1} +
T∑

k=2

Yt(k)1{Dk=1,Dk−1=0}.

I also introduce an auxiliary variable Kt ∈ {0, 1} that describes some behavior in the

scenario that all ACPs up to period t fail. For example, Kt might take the value 1 if a

woman would remain with her partner from her first ACP until period t if all ACPs up to

period t failed, and 0 if she would separate from her partner in this scenario.

I impose three assumptions.

Assumption 5 (Irreversibility).

Rt ≥ Rt+1, R
+
t ≥ R+

t+1,Wt+1 ≥Wt for all t.

The irreversibility assumption states that, first, women can only transition from being reliers

to non-reliers and from being subsequent reliers to non-subsequent-reliers, and second, the

willingness to undergo ACP can only increase over time. This assumption implies that

parenthood is irreversible.

Assumption 6 (No Anticipation).

Yt(k) = Yt(0) for all k > t.

The no anticipation assumption states that outcomes before becoming a mother do not

depend on having children in the future. This assumption is plausible regarding conception

because the success of future procedures is unknown. It may be less plausible regarding
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adoption, which could be anticipated; however, adoptions are extremely rare in my appli-

cation.19

Assumption 7 (Dynamic Conditional Sequential Unconfoundedness).

(Yt(k), R
+
l , Rl,Kl,Wl) |= Zj | Xtj for all j, k, l, t, and Xtj ∈ X 1

tj = {x ∈ Xtj : 1{At≥j} =

1}.

Where Xtj are covariates the the time of ACP j in period t with support Xtj . The dynamic

conditional sequential unconfoundedness assumption follows from a stronger assumption

that, among women who enter a specific ACP, the outcome of that ACP, conditional on

covariates at the time, is independent of type, potential outcomes, and behavior in different

scenarios across all periods. I also assume that SUTVA holds for all potential outcomes and

types.

The individual-level treatment effect in period t is:

τ(t) = Yt(1)− Yt(0).

The average treatment effect in period t is:

τATE(t) = E[τ(t)].

The average treatment effect in period t for reliers in period t is:

τATR(t) = E[τ(t) | Rt = 1].

The average treatment effect in period t for compliers in period t is:

τLATE(t) = E[τ(t) | Ct = 1].

Comparing τATR and τLATE between periods is complicated because the groups of reliers

and compliers can change, meaning that changes in τATR or τLATE may reflect compositional

changes rather than changes in the effects over time for a fixed group. To address this, I

define the average treatment effect in period t for women who remain reliers until the last

period T :

τATRL(t) = E[τ(t) | RT = 1].

To simplify exposition, I introduce additional notation for the effects of delaying parenthood.

Let R∗ be the period in which a woman would become a mother if all ACPs failed; R∗ takes

the value 0 if she would remain childless. Similarly, let C∗ be the period in which a woman

19Each year, there are around 40 domestic adoptions in the Netherlands, and the share of foreign-born
children in my sample is less than 1% (including those who were not adopted but whose mothers were abroad
at the time of childbirth).
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would become a mother if her first ACP failed; C∗ also takes the value 0 if she would

remain childless.20 The average effect of becoming a mother after all ACPs fail, relative to

becoming a mother at the first ACP in period t for non-reliers in period t, is:

δR(t) = E[Yt(R∗)− Yt(1) | Rt = 0],

I refer to this as the average effect of delaying parenthood for non-reliers. Similarly, the

average effect of becoming a mother after the first procedure fails, relative to becoming a

mother at the first procedure in period t for always-takers in period t, is:

δC(t) = E[Yt(C∗)− Yt(1) | Ct = 0],

and I refer to it as the average effect of delaying parenthood for always-takers.

7.2 Bias in Existing Methods

In this section, I introduce methods to assess the bias in the ES and IV estimators due to

selective fertility and dynamic effects, respectively. This bias cannot be quantified by com-

paring corresponding estimates to the bounds on τATR because different methods identify

effects for different sub-populations. Specifically, the IV targets τLATE , while the ES, when

implemented using women whose first ACP succeeded, targets a covariate-weighted τATE .
21

Both of these parameters may differ from τATR. After comparing estimates from different

methods, I introduce procedures to explicitly isolate the contributions of selective fertility

and dynamic effects.

Figure 9 presents estimates from different methods.22 The ES estimates suggest substan-

tial negative impacts on women’s labor market outcomes, while the IV estimates indicate

much smaller effects. The ES estimates based on a representative sample align closely with

those based on the ACP sample. These results mirror the finding from Denmark (Lundborg

et al., 2024). Relative to the bounds, the ES estimates indicate a larger cost of mother-

hood, while the IV estimates are generally within the bounds but suggest a larger reduction

in hours and income in the fourth year. In the medium run, the bonds do not rule out

substantially larger negative effects than those suggested by the IV estimates.

While my method addresses the bias in the IV and ES estimators, it does so at the

expense of point identification—a disadvantage to researchers willing to impose stronger

assumptions regarding selection or dynamic effects. However, my method compensates

with enhanced precision. I discuss this in Appendix A7, where I demonstrate that the 95%

confidence intervals for my bounds closely match those for IV and ES point estimates.

20Formally: R∗ = max (min{j : Rj = 0} ∪ {0}), C∗ = max (min{j : Cj = 0} ∪ {0}).
21The two methods identify weighted versions of the two parameters, with observations with e1(X1) closer

to 0.5 receiving higher weights. However, this has little impact because variation in e1(X1) is minimal.
22Hours refer to leave-adjusted work hours; implementation details are presented in Appendix A4.
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Figure 9: Naive Comparison of Different Methods

7.2.1 Instrumental Variable, Dynamic Effects, and Delayed Parenthood

In this section, I quantify the effects of delaying parenthood, which may bias the IV es-

timator of τLATE . I also discuss how τATR can be point-identified under the assumption

of static effects and how it can be used to test the assumptions employed in the methods

proposed by Bensnes et al. (2023) and Gallen et al. (2023).

Under assumptions 6 and 7 the IV identifies:

τLATE(t)− δC(t)
Pr(Ct = 0)

Pr(Ct = 1)
,

where the second term is the average effect of delaying parenthood for always-takers, scaled

by their relative share.

To assess the importance of dynamic effects, I bound the average effect of delaying

parenthood for non-reliers, δR. Focusing on δR is appealing because it allows for comparison

with τATR, similar to the comparison between τLATE and δC . Additionally, leveraging

the monotonicity assumption provides more informative bounds for δR than for δC . The

bounding procedure mirrors that for τATR, but focuses on women who conceive after all

ACPs fail, rather than those who remain childless after all ACPs fail.23

23In the first step, I identify the average later-treated outcome for non-reliers with a specific willingness
to undergo ACP using the average outcome among women who get their first child without ACP after
undergoing a specific number of ACPs: E[Yt|At = w,ZA = 0, Dt = 1] = E[Yt(R

∗)|Wt = w,Rt = 0].
The argument follows similar steps as for the relier average control outcome. Then, I bound the average
treated non-relier outcome by trimming the tails of the outcome distribution among women whose first ACP
succeeded using the identified non-relier share. Opposite to the baseline method, monotonicity is leveraged
by always including women who get non-ACP children after the first ACP succeeds.
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Figure 10: Effects of Delaying Motherhood

Figure 10 presents the results. The last graph shows the effects of ACP failure on par-

enthood timing. Among women who would conceive independently of ACP failure within

four years, failure delays fertility by an average of 2.3 years. For those who would conceive

independently within seven years, the average delay is 3.1 years. The estimated effects of

delaying parenthood on women’s work hours allow to rule out small negative contempo-

raneous impacts and even suggest at least a small positive effect in the fourth year. This

impact is even larger when work hours are not adjusted for possible parental leave. Seven

years after the first ACP, the bounds for both income and hours are relatively narrow and

centered around zero.

The positive contemporaneous effect of delaying parenthood on work hours is surpris-

ing. Delaying fertility implies having a younger first child, which is generally expected to

have a negative contemporaneous effect on women’s labor market outcomes due to higher

care requirements. Because of this, IV estimates are typically assumed to understate the

career cost of parenthood (Lundborg et al., 2024), whereas my results suggest the opposite.

One possible explanation for this concerns differences in total fertility. Women who enter

motherhood earlier tend to have more children, which increases the need for care. This can

explain why those who delay motherhood work more even after becoming mothers. The

data support this explanation: women whose first ACP succeeds have 0.2 children more

than women who become mothers after the first ACP fails, on average. This difference is

stable from 2 to 7 years after the first ACP.

While the bounds suggest, at most, modest effects of delaying motherhood in the

medium run, this may translate to substantial bias of the IV estimator because of the

large always-taker share, which converges to 75%. Assuming that the effects of delaying
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motherhood for always-takers are similar to the effects for non-reliers, IV estimates may

understate the career impacts of motherhood on work hours and income in year seven by

as much as 70%.

When the effects of parenthood are static, τATR can be point-identified using a method

proposed by Leuven et al. (2024). Alternatively, since under static effects E[Yt(R∗)|Rt =

0] = E[Yt(1)|Rt = 0] and since E[Yt(R∗)|Rt = 0] can be identified similar to E[Yt(0)|Rt = 1],

the relier average treated outcome can be backed out from the overall average treated

outcome as:

E[Yt(1)|Rt = 1] =
E[Yt(1)]− Pr(Rt = 0)E[Yt(R∗)|Rt = 0]

Pr(Rt = 1)
.

Then, it can be compared to the relier average control outcome E[Yt(0)|Rt = 0] identi-

fied using the baseline procedure. Identifying τATR this way serves as a starting point for

testing the parametric assumptions used in the approaches of Bensnes et al. (2023) and

Gallen et al. (2023). Specifically, if heterogeneity among women is limited and if the effect

depends solely on parenthood duration, then using either τATR or τLATE identified in the

short run to correct the bias in the longer run should yield the same results. I present the

formal argument and the empirical results in Appendix A8. They indicate substantial vio-

lations of the parametric assumptions. Gallen et al. (2023) discuss how the two assumptions

could be relaxed to allow for heterogeneity with respect to pre-ACP covariates; the relaxed

assumptions can be tested using a similar approach.

7.2.2 Event Study and Selective Fertility

Next, I quantify the extent of selective fertility, which may bias the ES estimator. I begin

by mapping the ES approach into my model. Then, using women’s first ACP as a proxy

for their fertility decision and leveraging ACP failures, I quantify the differences in average

childless career trajectories among women who choose to become mothers at different times.

Since the ES estimates based on the ACP and representative samples are indistinguishable,

as shown in Figure 9, quantifying the extent of selective fertility in the ACP sample may

also shed light on its role in the ES estimates for the non-ACP sample.

The most popular ES variation uses women who are one year away from becoming

mothers as a control group for similarly aged women who already have children. To formally

illustrate the ES approach in the context of my model, I first focus on women who conceive

through their first ACP. The parallel trends assumption states that conditional on age and

calendar time, control outcomes t periods after becoming a mother are the same as control

outcomes in the period before becoming a mother, on average:

Assumption 8 (Parallel Trends).

E[Yt(0)|aget = a, yeart = y, Z1 = 1] = E[Y0(0)|age0 = a, year0 = y, Z1 = 1], for all

t, a, y.

37



Where aget and yeart are the woman’s age and calendar year in period t, respectively.

This assumption allows for unbiased predictions of childless outcomes in period t based on

women’s age and calendar year in period t, using outcomes of women who were of the same

age and in the same calendar year in period 0—just before becoming mothers. Comparing

the realized treated outcomes in period t with these predictions gives the average treatment

effect:24

τATE(t) = E[Yt|Z1 = 1]− E[E[Y0|age0 = aget, year0 = yeart, Z1 = 1]|Z1 = 1].

When the parallel trends assumption does not hold, the bias term for τATE(t) is:

E[Yt(0)|Z1 = 1]− E[E[Y0(0)|age0 = aget, year0 = yeart, Z1 = 1]|Z1 = 1].

It measures the difference in age- and year-specific average childless outcomes between

women who have their first child earlier versus later, reflecting selective fertility timing.

The theoretical direction of the bias is ambiguous. On one hand, it might lead to an

overestimation of the career costs of parenthood if women with the highest career potential

delay fertility. On the other hand, it could result in an underestimation if women who would

succeed in their careers regardless of fertility choose to have children earlier. Additionally,

women may adjust their fertility plans in anticipation of career shocks, such as job loss or

promotion, which could introduce substantial bias even if the long-term trends between the

two groups are similar.

I quantify the extent of selective timing by comparing relier average childless career

trajectories identified using my baseline approach with those predicted using pre-ACP out-

comes of similarly aged reliers, as in the ES approach. These predictions are obtained

by modifying my baseline approach to identify age- and calendar-year-specific average pre-

ACP relier outcomes.25 Intuitively, I perform a placebo event study using reliers who remain

childless after ACP failure, treating their first ACP as the event, and identify how much

the ES approach would overstate the effects of parenthood for this group:

E[Yt(0)|Rt = 1]− E[E[Y0(0)|age0 = aget, year0 = yeart, Rt = 1]|Rt = 1].

Quantifying the extent of selective fertility specifically among reliers allows for a comparison

24The inner expectation is over Y0, the outer expectation is over aget and yeart. The inner expectation
may not be well defined because the support of age0 and year0 differs from that of aget and yeart; I abstract
from this in demonstrating the intuition and address it under implementation in Appendix A4.

25Formally, this procedure involves two steps. First, I identify the relier average control outcomes in the
period before their first ACP, conditional on age and calendar year: E[Y0(0) | age0 = a, year0 = y,Rt = 1].
The identification procedure follows the same steps as for the relier average control outcome E[Yt(0) | Rt = 1],
except that all expectations are conditioned on pre-ACP age and calendar year, and the realized labor market
outcome in period t is replaced by that in period 0. Then, as in the ES approach, I use these conditional
average control outcomes in period 0 to construct age- and calendar-year-specific predictions for control
outcomes after t periods.
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Figure 11: Placebo Event Study

with τATR, making it possible to distinguish how much of the gender inequality associated

with parenthood is driven by the effect of parenthood itself versus selective timing. My

empirical specification follows Kleven et al. (2019); I discuss implementation details in

Appendix A4.

Figure 11 presents separate estimates for men and women. They suggest that women

who choose to have children earlier would experience worse career outcomes than those who

choose to have children later, even in the absence of children, while the opposite is true for

men. The positive relationship between fatherhood and labor market outcomes aligns with

the descriptive literature documenting a “fatherhood premium” (Lundberg & Rose, 2000).

ES estimates also suggest the presence of this premium around the world, including the

Netherlands, (Kleven et al., 2024).

The main results, presented in Figure 12, demonstrate how much of the gender inequality

among reliers is jointly explained by the causal effect of parenthood and selective fertility

timing. In year 7, the two factors account for between 70% and 85% of inequality in work

hours and 50% to 80% of inequality in income.26 These results are consistent with the

baseline ES estimates, which capture both factors jointly. They suggest that at least 34%

of the gender inequality in work hours and 42% of the inequality in incomes associated with

parenthood is due to selective fertility timing, rather than the effects of parenthood itself.

In the context of my model, these results imply that selective fertility causes the ES

estimates to substantially overstate the impact of parenthood on women’s labor market

outcomes and gender equality. However, my model considers a particular counterfactual

scenario for not having children, specifically, one in which women try and fail to conceive.

26The share is even larger if differences in age between partners are accounted for.
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Figure 12: Share of Gender Inequality Explained by Effects of Parenthood and Selective Fertility

Women’s outcomes in this scenario may differ from a scenario in which they choose not to

have children, and the latter scenario may be more relevant from both a policy perspective

and the perspective of families making career and fertility decisions. One reason these

scenarios may differ is that failure to conceive (either in general or specifically via ACPs),

relative to not trying to conceive, may impact women’s (mental) health and/or relationship

stability, and in turn, labor market outcomes. If such effects are substantial, then the

placebo event study estimates may not reflect selective fertility but rather an important

component of parenthood that is overlooked by my baseline approach. I address these

effects in the next section.

7.3 Mental Health and Relationship Stability

Women who remain childless after ACP failure may experience negative (mental) health

outcomes and/or relationship breakdowns. This is important for my analysis for two main

reasons. First, it may limit the external validity of my findings, particularly when extrap-

olating to a setting where women choose to remain childless rather than fail to conceive.

If these effects are especially strong among ACP families, it may also impact extrapolation

to non-ACP families. Second, it threatens the internal validity of my estimates because

relationship breakdowns and mental health issues may lead to fewer attempts to conceive

without ACPs, which may violate the monotonicity assumption used to tighten the bounds.

In this section, I first discuss the potential relevance of these effects, then introduce a pro-

cedure to address them, and present empirical evidence.

Mental health issues and relationship breakdowns are arguably less concerning for the

external validity of my results when they arise from unmet fertility goals. In this case,
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these factors act as potential mechanisms through which parenthood influences labor market

outcomes in both ACP and non-ACP populations, regardless of whether individuals choose

to have children. In contrast, the ES approach, which uses families that may not have tried

or may not yet want to have children as a control group, might overlook these impacts.

Nonetheless, a remaining concern for extrapolating my results to non-ACP families, in this

case, is that such impacts may be especially strong in ACP families due to their particularly

high desire for children.

Mental health issues, in particular, raise concerns for extrapolating my estimates to a

scenario where women choose not to have children, when these issues result from the failure

to conceive or emerge as a side effect of ACPs, rather than from the absence of children.

This concern has been raised about studies using IVF, especially because IVF is relatively

invasive (Bögl et al., 2024). As a result, undergoing additional procedures after an initial

failure may impact women’s mental health, and consequently, their labor market outcomes,

independent of fertility or the desire to have children.

Both mental health issues and relationship breakdowns also threaten the internal validity

of my estimates that rely on the monotonicity assumption. Improved mental health and

relationship stability after a successful conception may lead to more attempts to conceive

via non-ACP means. Consequently, success in the first ACP could result in some women

having non-ACP children they would not have had if ACPs had failed, thereby violating

the monotonicity assumption.

Before addressing these concerns formally, I discuss their potential empirical relevance.

One strength of my setting compared to studies focused on IVF is that IUI is the primary

ACP that couples undergo. As discussed in Section 5.2, IUI is significantly less invasive

than IVF, which helps mitigate concerns about the potential side effects these procedures

may have on women’s mental and physical health.27 It is also worth noting that while some

women may experience ACP side effects, their impact on labor market outcomes is likely

negligible within the context of parenthood. Lundborg et al. (2024) present conservative

back-of-the-envelope calculations, drawing on economic research on severe health shocks

and medical literature documenting the prevalence of ACP side effects. They conclude that

these effects are unlikely to meaningfully influence women’s career trajectories. Finally, a

naive approach to quantify the importance of these mental health effects is to estimate the

impact of ACP failure on severe mental health outcomes, proxied by antidepressant uptake.

The estimates, presented in Appendix A9, are precise and indistinguishable from zero. This

provides suggestive evidence that ACPs do not have large effects on women’s mental health

outcomes. However, this does not fully address the external validity concerns. This is

because these effects are identified relative to a scenario where women have children, which

may also negatively impact their mental health compared to the scenario in which they

choose not to have children.

27This does not completely resolve the concerns because around a third of women whose first IUI procedure
fails eventually turn to IVF.
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Next, I introduce a new method to address the external validity concerns related to the

effects of ACPs on mental health and relationship stability. I adapt my baseline approach

to bound the effects specifically for women who, in the event of ACP failure, would remain

with their partners and not experience severe mental health issues, as proxied by the onset

of antidepressant medication. This ensures that my estimates are not driven by women

whose mental health or relationships may be negatively impacted specifically by ACPs,

nor by those who face the most significant consequences of childlessness. Additionally, this

addresses internal validity concerns related to the monotonicity assumption by allowing

for violations among women who might separate from their partners or experience mental

health issues after ACP failure.

The formal identification result amounts to treating only childless women who do not

uptake antidepressants and remain with their original partner as reliers.28 Let Kt take the

value 1 if, in period t and in the scenario that all ACPs fail, a woman would not suffer severe

mental health issues and would remain with her partner; otherwise, let it take the value 0.

I refer to this group as resilient (Kt = 1). I bound the average treatment effect specifically

for resilient reliers E[τ(t) | Rt = 1,Kt = 1]. I also relax the monotonicity assumption to:

Assumption 9 (Partial Monotonicity).

Pr(R+
t ≥ Rt | Kt = 1) = 1.

It states that monotonicity holds for resilient women. This implies that women who conceive

additional children without ACP after their first ACP succeeds would, in the scenario that

all ACPs fail, either have at least one non-ACP child, experience mental health issues, or

separate from their partners. This allows for the unconditional monotonicity violations

considered in this section. I discuss empirical support for the original and the partial

monotonicity assumptions in Appendix A9.

Figure 13 presents the results. In the first few years of parenthood, the bounds are

similar to those using the baseline approach. Up to the fourth year, the estimated share

of reliers that are resilient is above 90%. The bounds widen in the later years; by year 7,

the estimated share of reliers that are resilient is 85%. Nonetheless, this has only a modest

effect on the main conclusions. In the most extreme scenario, the share of gender inequality

in work hours and income caused by parenthood increases by less than 10 percentage points.

It is important to note that the procedure I use to address mental health and relationship

stability concerns is conservative for two reasons. First, it excludes from the comparison

women who would experience poor mental health or relationship breakdowns regardless of

fertility or attempts to conceive. This makes the bounds wider than if such women were

included. Second, it tackles both mental health and relationship breakdowns simultaneously.

The bounds presented in Appendix A9, which address these concerns separately, are even

28Redefining D+ to take the value 1 in cases where a woman has no children but either uptakes antide-
pressants or separates from her partner, and following a similar argument as for the baseline bounds, gives
the result.
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Figure 13: Effects on Resilient Women

closer to the baseline estimates.

These results are important for several reasons. Primarily, they support the extrapola-

tion of my findings to a counterfactual scenario where families choose not to have children,

thus avoiding potential mental health issues or relationship breakdowns associated with

unsuccessful conception attempts and ACPs. Additionally, they support extrapolation to

non-ACP families, where the impacts of failing to conceive may be less pronounced. Finally,

they suggest that my findings are not driven by relationship breakdowns or negative mental

health consequences following a failure to conceive, including the side effects of ACPs.

7.4 Effects Over Time and Stable Relier Group

The changes in my main estimates over time reflect a combination of two factors. First, how

the effect of parenthood evolves with time spent in parenthood. Second, since the group of

reliers shrinks over time, how effects differ between women who remain reliers for a different

duration. An equivalent concern regarding changing compliers applies to the IV estimates.

This means that my main results provide limited insight into how the effects evolve with

time spent in parenthood. To address it, I adapt my approach to bound the effects for a

stable group of reliers.

I bound τATRL, which is the effect for women who remain reliant until the last period.

The key assumption enabling this is irreversible fertility. It ensures that reliers who are

childless in the current period were also childless in previous periods. This allows to identify

their average control outcomes in earlier periods similar to their average control outcome

in the current period. It also allows to bound their average treated outcome in previous

periods by trimming the current relier share from the tails of the outcome distribution in
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Figure 14: Effects on a Stable Group of Women

earlier periods among current subsequent reliers.29 Figure 14 presents the results, which

remain similar to the baseline estimates and allow to rule out large changes in effects over

time.

7.5 Heterogeneity by Effort to Conceive

An interesting question in its own right, and a concern when extrapolating my results to the

non-ACP population, is whether families that exert more effort to have children face a lower

cost of parenthood. To explore this relationship, I proxy potential effort by the willingness

to undergo subsequent ACPs and examine heterogeneity in the effects along this dimension.

I build on a method introduced by Leuven et al. (2024) to assess such heterogeneity in a

setting without dynamic effects.

Intuitively, I leverage the fact that some women successfully conceive through subsequent

ACPs immediately after the first one fails, meaning their fertility timing closely resembles

what it would have been if their first ACP had succeeded. Since each ACP outcome is

as good as random, these women are a representative sample of those willing to undergo

multiple ACPs in quick succession, allowing to bound the treatment effect for this group.

29Without monotonicity, these bounds are mechanically at least as wide as the bounds on τATR because
the trimmed non-relier share can only increase over time. Under monotonicity is that bounds on τATRL may
be narrower than bounds on τATR. Intuitively, this can occur because the width of the bounds depends on
the difference between the subsequent relier share and the relier share, and the decrease in the subsequent
relier share over time may outweigh the increase in the relier share. For instance, if all women who would
eventually have children without ACP do so shortly after their first ACP fails, the relier share will remain
stable over time. In contrast, women whose first ACP succeeds can only have a non-ACP child after their
first ACP birth, meaning the subsequent relier share may decrease gradually. In this sense, information on
future fertility helps obtain narrower bounds on past effects.
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Figure 15: Effects on Women’s Cumulative Outcomes 7 Years into Parenthood by Willingness to
Undergo ACPs in Year 1

The average control outcoems for different types are identified using the baseline method.

I present a formal argument in Appendix A10.

The bounds for a subgroup of reliers with a high willingness to undergo ACPs can

be compared to the aggregate bounds obtained using the baseline method. However, this

serves as a conservative test for effect heterogeneity because it ignores the fact that some

points in the aggregate bounds may be inconsistent with those in the subgroup bounds.30

Instead, for each possible average effect in the high willingness subgroup, bounds for the

low willingness subgroup can be backed out from the aggregate bounds.

To present the relationship between bounds for two groups in a single figure, I focus

on cumulative hours and income over the first 7 years of parenthood. The horizontal axis

in Figure 15 presents the effect for women with a median-or-above willingness to undergo

ACPs in the first period. The vertical axis presents the effect for those whose willingness

to undergo ACPs in the first period is below the median. The results do not allow to rule

out homogeneous effects between the two groups, as indicated by the dashed line. In the

most extreme scenario, women with below-median willingness to undergo ACP experience

reductions in hours that are no more than twice those experienced by women with above-

median willingness, and reductions in income that are no more than 3.5 times as large. I

address the effect heterogeneity between ACP and non-ACP families in the next section.

30For example, consider a scenario where the lower bound for the subgroup is below the upper bound for
the aggregate group. A naive comparison would fail to rule out homogeneous effects, but it overlooks the
fact that the aggregate upper bound may not be attainable when the effect for the subgroup matches its
lower bound.
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7.6 Effects for Non-ACP Families

In this section, I provide suggestive evidence to address the concern that my results have

limited relevance for non-ACP families because ACP families face a lower career cost of

parenthood. It is worth noting that this concern may be less pronounced in my setting

compared to studies using IVF. As discussed in Section 5.2, IUI is less invasive and more

accessible than IVF, making couples who undergo the procedure more comparable to the

general population. To address this concern formally, I propose a procedure to identify the

effects for non-ACP mothers using their realized treated outcomes and control outcomes

imputed using childless women who tried to have children at a similar moment using ACPs.

My approach involves two steps. First, I estimate the relier average childless outcomes

conditional on pre-ACP education and age using my baseline method. Then, I use these es-

timates to predict outcomes for non-ACP women based on their age and education prior to

conception. The full argument is presented in Appendix A11. The primary concern to ad-

dress is that the childless career trajectories imputed using ACP women may systematically

differ from those among non-ACP women.

I benchmark my method against the ES approach. The main piece of evidence used

to justify the ES approach is that women who become mothers earlier have similar career

trajectories up to the moment of parenthood as women who become mothers later. However,

a concern is that differences in childless career trajectories might emerge after some women

choose to become mothers while others decide to remain childless. One reason this may occur

is that the decision to have children is influenced by anticipated worse career trajectories. In

contrast, the main appeal of my method is that it uses women who choose to have children

at a similar moment, albeit through different means. Assuming my approach also performs

well in replicating women’s childless career trajectories up to motherhood, there is arguably

less reason to worry that differences would emerge after motherhood.

Figure 16 plots the average childless career trajectories for women in the non-ACP

sample, imputed using the two methods. Year 0 serves as the baseline for the ES approach,

meaning that the ES estimates mechanically match the average control outcomes in this

period. The average outcomes imputed using the new approach align almost perfectly.

This is the strongest support for the validity of my method. Its ability to replicate pre-

parenthood career trajectories among non-ACP mothers using only age and education is

not mechanical, as the average outcomes for the ACP and non-ACP samples can differ

substantially. While the new approach suggests a relatively flat control hours profile after

parenthood, the ES approach suggests a rising one. Since almost all of these women have

completed their education by t = 0, the steady increase in average work hours implied by

the ES approach is harder to explain. Similarly, while both methods suggest rising income

over time, the trajectory based on the new approach is flatter.

As an additional validation exercise for imputation from the ACP sample to the non-

ACP sample, I impute treated career trajectories for non-ACP women using women whose

46



600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

−1 0 1 2 3 4 5 6 7
Time (years)

Hours

12500

15000

17500

20000

22500

25000

27500

30000

32500

35000

37500

40000

−1 0 1 2 3 4 5 6 7
Time (years)

Income

ES Imp. 95% CI dif.

Figure 16: Imputed Childless Career Trajectories for Non-ACP Mothers
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Figure 17: Imputed Motherhood Career Trajectories for Non-ACP Mothers

47



−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

−1 0 1 2 3 4 5 6 7
Time (years)

Hours

−20000

−17500

−15000

−12500

−10000

−7500

−5000

−2500

0

2500

5000

7500

−1 0 1 2 3 4 5 6 7
Time (years)

Income

ES Imp. 95% CI dif.

Figure 18: Effects of Parenthood Based on Imputed Childless Career Trajectories for Non-ACP
Mothers

first ACP succeeded. The results are presented in Figure 17. The ES estimates match

the treated career trajectories exactly because they correspond to OLS fitted values. The

trajectories imputed using the new approach follow them closely.31

Finally, Figure 18 presents estimates of the average career impacts of motherhood in the

non-ACP sample using the new approach, alongside the ES estimates. The ES estimates

suggest that the career cost of motherhood increases with time, while estimates using the

new approach suggest a more stable impact. Seven years into motherhood, the ES estimates

indicate a 38% reduction in hours and a 33% reduction in income. Estimates using the new

approach suggests a substantially smaller reduction of 27% in hours and 17% in income.

These results for the non-ACP population are consistent with my bias decomposition esti-

mates for the ACP sample, suggesting that ES estimates may overstate the career cost of

motherhood.

8 Conclusion

Parenthood can explain most of the observed gender inequality in labor force participation

in the Western world (Kleven et al., 2024). However, providing causal evidence of its effects

has proven challenging for two main reasons. First, the decision to have children may be

related to labor market outcomes independent of fertility. Second, the effects of parenthood

may depend on its timing. In this paper, I propose a method that leverages women’s ACP

31Average completed fertility in both groups is 1.8, suggesting that fertility differences do not confound
the comparison.
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histories to bound the effects of parenthood, ensuring robustness to both selective fertility

and dynamic effects.

It is worth emphasizing that the procedure I introduce can be used to bound treatment

effects in various settings where individuals are quasi-experimentally assigned to one state

but may enter others, either by undergoing quasi-experimental assignment multiple times or

through entirely selective means. Such settings include educational programs with multiple

admission cycles, job training programs with multiple entry pathways, legal settings with

quasi-experimental assignment to judges, and clinical trials in the extension phase, allowing

the control group to access alternative therapies. The procedure can also be applied to

sequential experiments where outcome data is missing for some individuals.

Applying my method to estimate the career impacts of parenthood in the Netherlands,

I find persistent reductions in women’s yearly work hours, between 10% and 25%, and in

their income, between 9% and 29%. Despite that, I find that at least half of the observed

post-child gender inequality in these outcomes is not caused by parenthood. I also provide

evidence suggesting that estimates based on the ES approach may substantially overstate

the career impacts of parenthood due to selective fertility. In contrast, I find that IV

estimates may understate these impacts due to dynamic effects. Moreover, I demonstrate

that accounting these biases can reconcile the conflicting results in the literature.

My analysis also addresses several external validity concerns raised about existing studies

on the effects of parenthood, particularly those relying on IVF and Scandinavian data. By

focusing on IUI, which is significantly less invasive and more accessible than IVF, I mitigate

concerns related to the mental health impacts of IVF and the sample selectivity of families

undergoing this procedure. To further address concerns about the mental health effects

associated with failing to conceive, I adapt my method to ensure my estimates are based

on women who do not take antidepressants in this scenario. Finally, using data from the

Netherlands, where family-friendly policies are relatively average compared to other OECD

countries, makes my results more applicable to countries with less generous policies than

those in the Scandinavian context.

My findings have important implications for understanding the causes of gender in-

equality in the labor market and for identifying remedies to alleviate it. Existing research

leveraging short-run variation in family-friendly policies suggests that they often have, at

best, modest impacts on gender inequality (Cortés & Pan, 2023). My results indicate that

this may be partly because a large share of gender inequality is not caused by parenthood

per se. Moreover, studies focusing on short-run variations may overlook how family-friendly

policies influence women’s behavior by lowering the anticipated cost of parenthood, poten-

tially leading to greater educational and career investment. Consequently, such policies may

still have substantial impacts on gender inequality in the long run, independent of realized

fertility and its effects.
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A1 Proof of Theorem

Lemma. For any for l s.t. 1 ≤ l ≤ w and any measurable function g(Ml), where:

Ml = (Y (1), Y (0), R+, R,W,Z1, . . . , Zl, X1, . . . , Xl)

under assumptions 3 and 4:

E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
= E [g(Ml)|Xl] .

Proof of lemma. Since Zj = 0|A < j, and since Xj includes 1{A≥j}, Z1, . . . , Zj−1, and

X1, . . . , Xj−1, assumption 3 implies:

(Y (1), Y (0), R+, R,W,Z1, . . . , Zj−1, X1, . . . , Xj−1) |= Zj |Xj for all j > 1. (3)

Assumption 4 ensures that 1 − ej(xj) > 0 for all j and xj ∈ Xj . Then, w.l.o.g. for some l

s.t. l < w:

E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
= E

[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
= E

[
E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xw, Xl

]∣∣∣∣Xl

]
(4)

= E
[
E
[
g(Ml)Π

w
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xw

]∣∣∣∣Xl

]
(5)

= E
[
g(Ml)Π

w−1
j=l+1

(1− Zj)

(1− ej(Xj))
E
[

1− Zw

1− ew(Xw)

∣∣∣∣Xw

]∣∣∣∣Xl

]
(6)

= E
[
g(Ml)Π

w−1
j=l+1

(1− Zj)

(1− ej(Xj))

∣∣∣∣Xl

]
(7)

= E [g(Ml)|Xl] , (8)

where (4) holds by law of iterated expectations, (5) holds because Xj includes Xl for j ≥ l,

(6) holds by 3, (8) holds by assumption 3 because:

E
[

1− Zw

1− ew(Xw)

∣∣∣∣Xw

]
=

1− E [Zw|Xw]

1− ew(Xw)

=
1− ew(Xw)

1− ew(Xw)

= 1,

and where (8) follows by steps similar to (4) through (6) for Xj for j s.t. l < j < w.

Proof of theorem. I demonstrate the result for the upper bound, the result for the lower

bound is symmetric. First, I demonstrate that E
[
Y (1−D+)

∏w
j=1

(1−Zj)
(1−ej(Xj))

]
/E[r(X1)] =
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E[Y (0)|R = 1]. Using that D+ = D|ZA = 0, Y = Y (0)|D = 0, and D = R|ZA = 0:

E

Y (1−D+)

w∏
j=1

(1− Zj)

(1− ej(Xj))

 = E

E
Y (0)R

w∏
j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣∣∣X1

 (9)

= E
[
E
[
Y (0)R

1− Z1

1− e1(X1)

∣∣∣∣X1

]]
(10)

= E
[
E [Y (0)R|X1]E

[
1− Z1

1− e1(X1)

∣∣∣∣X1

]]
(11)

= E [Y (0)R|X1] (12)

= E [Y (0)|R = 1]Pr(R = 1), (13)

where (9) holds by law of iterated expectations, (10) holds by Lemma, and (11) and (12)

hold by assumption 3. Moreover since D+ = R|ZA = 0 and 1− ZA =
∏w

j=1(1− Zj):

E

(1−D+)
w∏

j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣∣∣X1

 = E

R w∏
j=1

(1− Zj)

(1− ej(Xj))

∣∣∣∣∣∣X1

 (14)

= E
[
R

1− Z1

1− e1(X1)

∣∣∣∣X1

]
(15)

= Pr(R = 1|X1), (16)

where (15) holds by Lemma and (16) holds by assumption 3. Since E[Pr(R = 1|X1 = x)] =

Pr(R = 1), E
[
Y (1−D+)

∏w
j=1

(1−Zj)
(1−ej(Xj))

]
/E[r(X1)] = E[Y (0)|R = 1] holds.

Remains to show that E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1
e1(X1)

]
/E[r(X1)] is a sharp upper

bound for E[Y (1)|R = 1]. I first demonstrate that p(x) = Pr(R = 1|D+ = 0, Z1 = 1, X1 =

x). Assumption 3 together with D+ = 1−R+|Z1 = 1 implies that r+(x) = Pr(R+ = 1|X1 =

x). Under assumption 2, Pr(R = 1|X1 = x) = Pr(R = 1, R+ = 1|X1 = x). Applying the

definition of conditional probability gives p(x) = Pr(R = 1|R+ = 1, X1 = x). Assumption

3 together with D+ = 1 − R+|Z1 = 1 gives Pr(R = 1|D+ = 0, Z1 = 1, X1 = x) = Pr(R =

1|R+ = 1, X1 = x), which implies the result.

The remainder of the proof is similar to Lee (2009). Let γx = E[Y |Z1 = 1, D+ =

0, Y ≥ q(1 − p(X1), X1), X1 = x]. I next demonstrate that γx is a sharp upper bound for

E[Y (1)|X1 = x,R = 1]. Using that p(x) = Pr(R = 1|D+ = 0, Z1 = 1, X1 = x), Corollary

4.1 Horowitz & Manski (1995) gives, γx ≥ E[Y |Z1 = 1, D+ = 0, R = 1, X1 = x]. Using

that D+ = 0|R = 1 and Y = Y (1)|Z1 = 1 and by assumption 3, E[Y |Z1 = 1, D+ =

0, R = 1, X1 = x] = E[Y (1)|X1 = x,R = 1], meaning that γx is an upper bound bound for

E[Y (1)|X1 = x,R = 1]. Since p(x) is identified, Corollary 4.1 Horowitz & Manski (1995)

also implies the bound is sharp.

Let fx|R=1(x) be the p.d.f. of X1 conditional on R = 1. Applying Bayes rule to

Pr(R = 1|X1 = x) identified by r(x) and p.d.f. of X1 is identified directly gives fx|R=1(x),
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making
∫
X1
γxfx|R=1(x)dx the sharp upper bound for E[Y (1)|R = 1].

The last step is to show that∫
X1

γxfx|R=1(x)dx = E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
/E[r(X1)].

By the law of iterated expectations:

E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
= E

[
1

e1(X1)
E[Y (1−D+)1{Y >q(1−p(X1),X1)}Z1|X1]

]
.

Applying the definition of conditional probability:

E[Y (1−D+)1{Y >q(1−p(X1),X1)}Z1|X1] =

E[γX1 |X1] Pr(D
+ = 0, Z1 = 1, Y > q(1− p(X1), X1)|X1).

Applying the definition of conditional probability twice:

Pr(D+ = 0, Z1 = 1, Y > q(1− p(X1), X1)) =

Pr(Y > q(1− p(X1), X1)|D+ = 0, Z1 = 1, X1) Pr(D
+ = 0|Z1 = 1, X1) Pr(Z1 = 1|X1).

Using the definitions of p(X1), r
+(X1), and e1(X1), the term on the right-hand side is

p(X1)r
+(X1)e1(X1), and from definition of p(X1) it simplifies to r(X1)e1(X1), which gives:

E
[
Y (1−D+)1{Y >q(1−p(X1),X1)}

Z1

e1(X1)

]
= E

[
1

e1(X1)
E[γX1 |X1]r(X1)e1(X1)

]
= E[γX1r(X1)].

Applying Bayes rule for densities:

E[γX1r(X1)] =

∫
X1

γx Pr(R = 1|X1 = x)fx(x)dx

=

∫
X1

γxfx|R=1(x)dxPr(R = 1).

Since E[r(X1)] = Pr(R = 1), the statement holds.

A2 Orthogonality

I demonstrate orthogonality of ψU+(G, ξ0) with respect to one of the propensity scores

el(xl) for l s.t. 1 < l < w. The arguments for other parameters involve first applying the

Lemma to eliminate the dependence of the conditional expectation of the moment function

on propensity scores ej(xj) for j > 1. Afterward, the steps are similar to those in Semenova
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(2023). The approach for other moments follows a similar process.

Define r ∈ [0, 1) → ψU+(G, r) ≡ ψU+(G, ξr), where:

ξr = {e1(x1), . . . , el(xl, r), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1),

q(p(x1), x1), q(1− p(x1), x1)), β1(x1), . . . , βw(xw), β
+(x1), z

U+(x1), z
L+(x1)}

and where el(xl, r) = el(xl) + r(êl(xl) − el(xl)), with êj(xj) such that êj(xj) ̸= ej(xj) for

xj ∈ X 1
j . Note that since ej(xj) = 0 is known for xj ∈ Xj\X 1

j , it follows that êj(xj) = ej(xj),

implying that el(xl, r) = el(xl) for such xl.

I demonstrate that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0, a.s.. Since the moment does not depend

r when A < l (because 1{A≥l} = 0 and because el(Xl, r) = el(Xl) in such cases) it is sufficient

to show that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 for values ofXl s.t. A ≥ l; the rest of the argument

assumes Xl satisfies this condition.

For k ≥ l define Sk ≡ {1, . . . , k} \ {l}. Using that Zj = 0, ej(Xj) = 0|A < l

E[ψU+(G, ξr)|Xl] simplifies to:

E[ψU+(G, ξr)|Xl] = E

[
− Y (0)RΠj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

+ q(p(X1), X1)[Πj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

+

w∑
k=l+1

1{A≥k}Πj∈Sk−1

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

ek(Xk)− Zk

1− ek(Xk)
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))]

+ 1{A≥k}Πj∈Sl

(1− Zj)

(1− ej(Xj))

el(Xl, r)− Zl

1− el(Xl, r)
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))]

∣∣∣∣∣Xl

]
.

Define:

f lk(Xk) ≡ 1{A≥k}Πj∈Sk−1

(1− Zj)

(1− ej(Xj))

1− Zl

(1− el(Xl, r))
[rk(Xk)βk(Xk)

+ q(p(X1), X1)(r1(X1)− rk(Xk))].

For k > l:
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E

[
f lk(Xk)

ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣∣Xl

]
= E

[
E

[
f lk(Xk)

ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣∣Xk, Xl

]∣∣∣∣∣Xl

]
(17)

= E

[
f lk(Xk)E

[
ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣∣Xk

]∣∣∣∣∣Xl

]
(18)

= 0, (19)

where (17) holds by law of iterated expectations, (18) holds because Xk contains Xl, and

(19) holds because by (3):

E

[
ek(Xk)− Zk

1− ek(Xk)

∣∣∣∣∣Xk

]
= 0.

Moreover, by (3):

E

[
− Y (0)RΠj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

+ q(p(X1), X1)[Πj∈Sw

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

∣∣∣∣∣Xl

]

= E

[
− Y (0)RΠj∈Sl

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))

+ q(p(X1), X1)[Πj∈Sl

(1− Zj)

(1− ej(Xj))

(1− Zl)

(1− el(Xl, r))
(R− r1(X1))]

∣∣∣∣∣Xl

]

= Πj∈Sl

(1− Zj)

(1− ej(Xj))
E[−Y (0)R

+ q(p(X1), X1)[(R− r1(X1))]|Xl]E

[
(1− Zl)

(1− el(Xl, r))

∣∣∣∣∣Xl

]
(20)

= Πj∈Sl

(1− Zj)

(1− ej(Xj))
[−βl(Xl)rl(Xl) + q(p(X1), X1)(rl(Xl)− r1(X1))]E

[
(1− Zl)

(1− el(Xl, r))

∣∣∣∣∣Xl

]
(21)

≡ µl(Xl)E

[
(1− Zl)

(1− el(Xl, r))

∣∣∣∣∣Xl

]
, (22)

where (20) also holds by (3), and where (21) holds by applying (3) to the definitions of βl(.)

and rl(.), after noting that we are consider values of Xl s.t. 1{A>l} = 1.
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Similarly, applying (3) gives:

E

[
Πj∈Sl

(1− Zj)

(1− ej(Xj))

el(Xl, r)− Zl

(1− el(Xl, r))
[rl(Xl)βl(Xl) + q(p(X1), X1)(r1(X1)− rl(Xl))]

∣∣∣∣∣Xl

]

= Πj∈Sl

(1− Zj)

(1− ej(Xj))
[rl(Xl)βl(Xl) + q(p(X1), X1)(r1(X1)− rl(Xl))]E

[
el(Xl, r)− Zl

(1− el(Xl, r))

∣∣∣∣∣Xl

]
.

Combining the above, E[ψU+(G, ξr)|Xl] simplifies to:

E[ψU+(G, ξr)|Xl] = µl(Xl)

[
E

[
(1− Zl)

(1− el(Xl, r))

∣∣∣∣∣Xl

]
− E

[
el(Xl, r)− Zl

(1− el(Xl, r))

∣∣∣∣∣Xl

]]

= µl(Xl)

[
1− el(Xl)

1− el(Xl, r)
− el(Xl, l)− el(Xl)

1− el(Xl, r)

]
= µl(Xl),

meaning that ∂r E[ψU+(G, ξr)|Xl]|r=0 = 0 a.s.. Meanwhile, for the baseline moment:

∂r E[mU (G, ηr)|Xl]|r=0 = ∂rµl(Xl)
1− el(Xl)

1− el(Xl, r)

∣∣∣∣∣
r=0

= µl(Xl)
1− el(Xl)

(1− el(Xl, r))2
(êl(Xl)− el(Xl)).

meaning that ∂r E[mU (G, ηr)|Xl]|r=0 ̸= 0 a.s..

A3 Relaxing Monotonicity Following Semenova (2023)

A challenge that may arise when implementing the bounds under a non-trivial monotonicity

assumption is that, for some values of X1, such as x∗1, the estimated relier share is greater

than the estimated subsequent relier share. This may occur because the monotonicity

assumption is violated; however, since the two shares are estimated on different groups,

this may also occur by chance. In either case, it results in the estimated trimming share

p(x∗1) taking values above one, and since such values are not valid inputs for the quantile

function q(p(x∗1), x
∗
1), the bounds become ill-defined. To address the equivalent problem in

the Lee (2009) setting, Semenova (2023) relaxes the monotonicity assumption, allowing the

direction of monotonicity to vary with X1. In my setting, this implies that all women with

certain pre-ACP covariates who had a non-ACP child after ACP failure would have also

had a non-ACP child if their first ACP had succeeded. This assumption is harder to justify

from an economic perspective; one plausible interpretation could be that some families

would like to have at least two children but would rather remain childless than have only

one. Even if the assumption can be justified, implementing this approach using adapted
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moments is complicated because they involve weighted quantile functions estimated on small

groups of women who enter subsequent ACPs. Because of this, in my main specification, I

maintain the original monotonicity assumption and treat cases where the estimated relier

share exceeds the subsequent relier share as if the two were equal. If the reversal of the

estimated shares occurs because the true shares are very close, treating them as equal

or following Semenova (2023) should yield practically identical results. Under sequential

unconfoundedness, the expectation of the moment for treating them as equal, ψ−(G, ξ0),

given in Table 1, identifies the difference between the conditional subsequent relier average

treated outcome and the conditional relier average control outcome:

E[ψ−(G, ξ0) | X1 = x∗1]

E[r(X1) | X1 = x∗1]
= E[Y (1) | R+ = 1, X1 = x∗1]− E[Y (0) | R = 1, X1 = x∗1].

When the shares of the two types are equal, monotonicity implies that the two groups are

the same, and the difference between the two terms is E[τ | R = 1, X1 = x∗1].

To test the sensitivity of my result, I allow for the direction of monotonicity to vary

with covariates following Semenova (2023). Define Xhelp ≡ {x : r+(x) ≥ r(x)} and Xhurt ≡
X1 \ Xhelp. The relaxed monotonicity assumption is that ∀x ∈ Xhelp R

+ ≥ R a.s., and

∀x ∈ Xhurt R
+ < R a.s.. Table A5 describes the moments for the case when X1 ∈ Xhurt.

The new estimator of the lower bound is:∑
i

(
ψL+(Gi, ζ̂i)1{p(X1)≤1} + ψL−(Gi, ζ̂i)1{p(X1)>1}

)
∑

i

(
ψR(Gi, ζ̂i)1{p(X1)≤1} + ψR+(Gi, ζ̂i)1{p(X1)>1}

) .

The new estimator of the upper bound is:

∑
i

(
ψU+(Gi, ζ̂i)1{p(X1)≤1} + ψU−(Gi, ζ̂i)1{p(X1)>1}

)
∑

i

(
ψR(Gi, ζ̂i)1{p(X1)≤1} + ψR+(Gi, ζ̂i)1{p(X1)>1}

) .

I implement it following the baseline approach, but since a weighted generalized quantile

forests estimator is not available, I estimate all nuisance functions involving expectations

and quantiles using OLS and quantile regressions, respectively. Using regression only for

the quantile function has little impact on the estimates. Figure A19 presents the results for

women’s outcomes. Overall, they are similar to the baseline estimates.
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Table A5: Moment Functions for Covariate-Conditional Monotonicity

Moment functions

ψ−
L (W, ζ0)

Z1
e1(X1)

(1−D+)Y −Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)Y 1{Y >q0(1−1/p(X1),X1)}

−q0(1− 1/p(X1), X1)
[

Z1
e1(X1)

(1−D+ − r+(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
1

p(X1)
(1−D+ − r1(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)(1{Y >q0(1−1/p(X1),X1)} − 1/p(X1))

]
−Z1−e1(X1)

e1(X1)
β+(1, X1)r

+(X1)

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−ej(Xj)
ek(Xk)−Dk
1−ek(Xk)

×
[ (
rk(X1)r

L
k (Xk)z

L−
k (Xk) +

q0(1−1/p(X1),X1)
p(X1)

(r1(X1)− rk(X1))
)

+q0(1− 1/p(X1), X1)rk(X1)(1/p(X1)− rLk (Xk))
]

ψ−
U (W, ζ0)

Z1
e1(X1)

(1−D+)Y −Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)Y 1{Y <q0(1/p(X1),X1)}

−q0(1/p(X1), X1)
[

Z1
e1(X1)

(1−D+ − r+(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
1

p(X1)
(1−D+ − r1(X1))

−Πw
j=1

1−Zj

1−ej(Xj)
(1−D+)(1{Y <q0(1/p(X1),X1)} − 1/p(X1))

]
−Z1−e1(X1)

e1(X1)
β+(1, X1)r

+(X1)

+
∑w

k=1 1{A≥k}Π
k−1
j=1

1−Dj

1−ej(Xj)
ek(Xk)−Dk
1−ek(Xk)

×
[ (
rk(X1)r

U
k (Xk)z

U−
k (Xk) +

q0(1/p(X1),X1)
p(X1)

(r1(X1)− rk(X1))
)

+q0(1/p(X1), X1)rk(X1)(1/p(X1)− rUk (Xk))
]

ψR+(G, ζ0) r+(X1) + (1−D+ − r+(X1))
Z1

e1(X1)

Nuisance functions

ζ0(x1, . . . , xw) {e1(x1), . . . , ew(xw), r1(x1), . . . , rw(xw), r+(x1), q(p(x1), x1), q(1− p(x1), x1),

β1(x1), . . . , β
w(xw), β

+(x1), z
U+(x1), z

L+(x1), z
U−
1 (x1), . . . , z

U−
w (xw), q

0(1/p(x1), x1),

q0(1− 1/p(x1), x1), z
L−
1 (x1), . . . , z

L−
w (xw), r

L
1 (x1), . . . , r

L
w(xw), r

U
1 (x1), . . . , r

U
w(xw)}

q0(u, x) inf{q : u ≤ E[1{Y ≤q}/Π
w
j=2(1− ej(Xj)) | X1 = x,D = 0]/

E[Πw
j=2(1− ej(Xj)) | X1 = x,D = 0]}

zL−
k (x) E[Y/Πw

j=k+1(1− ej(Xj)|Y ≥ q0 (1− 1/p(X1), X1) , D = 0, Xk = x]
E[Πw

j=k+1(1− ej(Xj)|Y ≥ q0 (1− 1/p(X1), X1) , D = 0, Xk = x]

zU−
k (x) E[Y/Πw

j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]
E[Πw

j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]
rLk (x) E[1Y >q0(1−1/p(X1),X1)

/Πw
j=k+1(1− ej(Xj)|D = 0, Xk = x]

E[Πw
j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]

rUk (x) E[1Y <q0(1/p(X1),X1)
/Πw

j=k+1(1− ej(Xj)|D = 0, Xk = x]
E[Πw

j=k+1(1− ej(Xj)|Y ≤ q0 (1/p(X1), X1) , D = 0, Xk = x]
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Figure A19: Effect on Women Under Relaxed Monotonicity Following Semenova (2023)
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A4 Implementation Details

A4.1 Main Specification

I use 3-fold cross-fitting, meaning that in each sample split 2/3 of the observations are

used to estimate the nuisance functions for the remaining observations. Because I assume

that the propensity scores only include a few discrete covariates—age in years, dummy for

higher education, and procedure type—they could be estimated non-parametrically using

saturated fixed effects regressions. However, later propensity scores need to be estimated

on small samples, and including many fixed effects makes them susceptible to outliers, this

is especially undesirable because these scores are also used as weights to estimate other

nuisance functions. Instead, in my main specification, I estimate them using logistic re-

gressions. Specifically, for each ACP, I regress the outcome among women who entered

that ACP on second-order polynomials of women’s and partners’ ages at the time of the

procedure, interacted with treatment-type dummies (IUI or ACP), and separate dummies

for each partner having at least a bachelor’s degree.32 To further avoid outlier weights, I

only use the first 10 ACPs women undergo and treat conceptions through later ACPs as

conceptions without ACPs; only 7% of women reach the tenth ACP. This means that, in

my application, reliers are women who would remain childless in the scenario that their first

10 ACPs fail. Including up to 15 ACPs has little impact on my estimates. The remaining

nuisance functions are estimated using Generalized Random Forests for conditional expec-

tations and quantiles (Athey et al., 2019).33 The covariates in X1 include the woman’s

and their partner’s income and work hours measured in the year before the woman’s first

ACP, and other covariates included in the first propensity score. The covariates in Xk ad-

ditionally include those from the propensity scores at all ACPs up to and including ACP

k. I modify work hours and income outcomes by adding a small amount of continuously

distributed noise to ensure the new outcomes are continuous u ∼ U(0, 0.001).34 Following

Heiler (2024), my confidence intervals for the bounds are based on Stoye (2020).

Confidence intervals for the bounds on the effect scaled by the treated mean are also

based on Stoye (2020), with covariance matrices obtained using delta method in these steps:

(1) estimate ξ̂i using cross-fitting, (2) construct separate sample moments for the control

mean and the upper and lower bounds for the treated mean evaluated at ξ̂i (m1,m2, andm3,

respectively), (3) compute the joint covariance matrix for the three sample moments, (4)

obtain the joint covariance matrix for (m2−m1)/m2 and (m3−m1)/m3 using delta method.

32Using age-fixed effects and/or excluding the education dummies does not meaningfully impact the
results.

33I estimate the truncated conditional expectation functions zU+
t and zL+

t by trimming data above or
below the estimated quantiles and estimating conditional expectations. While this method may affect the
asymptotic distribution of the bounds, simulations using data generated to approximate the distributions of
the real data suggest such impacts are small.

34Lee (2009) procedure requires continuous outcomes only to avoid ties in the trimming procedure; adding
a small amount of continuously distributed noise resolves this issue, allowing the effects to be appropriately
bounded even in the case of discrete outcomes.
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Placebo event study confidence intervals are obtained using Bayes bootstrap standard errors

with weights wi ∼ exp(1) and 150 draws.

A4.2 Extensions

A4.2.1 Instrumental Variable

I implement the IV following Lundborg et al. (2017), where the first stage specification is:

Dit = Zi1β
FS
t +Xi1χ

FS
t + εFS

it ,

and the second stage specification is:

Yit = D̂itβ
IV
t +Xi1χ

IV
t + εIVit ,

where the parameters for the effect of parenthood in period t is βIVt .

A4.2.2 Even Study

I implement the ES following the fixed effect specification of Kleven et al. (2019):

Yit = βES
0 +

∑
j ̸=0

βES
j 1{t=j} +

∑
a

αa1{ageit=a} +
∑
y

γy1{yearit=y} + υit, (23)

where the parameters for the effect of parenthood in period t is βES
t . To make the ACP

sample ES estimates as comparable to the IV estimates as possible, I restrict the sample to

women whose first ACP succeeded.

A4.2.3 Placebo Event Study

I implement the placebo ES using (23) on a sample of women who remain childless 7

years after the first ACP with weights ww
i = 1/ΠAi7

j=1(1 − ej(Xji)). This ensures that βES
t

corresponds to the bias that would arise in the ES approach due to selective fertility among

reliers, which allows for comparison with τATR(t). Standard errors are obtained using

Bayes bootstrap in these steps: (1) draw weights wi ∼ exp(1), (2) estimate ej(xj) for all j

with weights wi to obtain an estimate of ww
i , (3) estimate the placebo ES with estimated

weights wiw
w
i , (4) repeat steps 1-3 150 times to obtain a collection of bootstrap estimates

(5) estimate the variance of the bootstrap estimates.

Share of gender inequality due to parenthood and selective fertility in year t estimated

in the following steps: (1) construct separate sample moments for the control mean and

the upper and lower bounds for the treated mean (a1, a2, and a3, respectively), where Y is

the female labor market outcome subtracted from the male labor market outcome in period

t, (2) implement the placebo ES using the female labor market outcome and age, repeat

it for the male labor market outcome and age, obtain the estimate for period t, a4, by
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subtracting the female estimate for period t from the male estimates estimate for period t,

(3) construct the bounds (a2 − (a1 + a4))/a2 and (a3 − (a1 + a4))/a3. Confidence intervals

are based on Stoye (2020), with covariance matrices obtained using Bayes bootstrap and

delta method in these steps: (1) estimate ξ̂i using cross-fitting where Y is the female

labor market outcome subtracted from the male labor market outcome, (2) draw weights

wi ∼ exp(1), (3) implement the placebo ES with weights wi using the female labor market

outcome and age, repeat it for the male labor market outcome and age, obtain the estimate

a4 for the difference between the male and the female estimates, (4) construct separate

sample moments for the control mean and the upper and lower bounds for the treated

mean evaluated at ξ̂i with weights wi (a1, a2, and a3, respectively), (5) repeat steps 2-4

150 times to obtain a collection of bootstrap estimates, (6) estimate the joint covariance

matrix of a1, a2, a3 and a4, (7) obtain the joint covariance matrix for (a2 − (a1 + a4))/a2

and (a3 − (a1 + a4))/a3 using delta method.

A5 Using Continuous Covariates without Debiased Machine

Learning

Here I introduce a new method to narrow the bounds by leveraging continuous covariates.

For a known measurable function g : X1 → R, define ε ≡ Y (1)−g(X1). Intuitively, g(X1) can

be thought of as OLS fitted values, and ε can be thought of as OLS residuals after regressing

Y on X1 among women whose first ACP succeeded. The idea behind the new approach is

that the component of E[Y (1)|R = 1] explained by g(.) can be identified. As a result, only

the residual component needs to be bounded, and the distribution of ε can be tighter than

the distribution of Y (1), which results in narrower bounds. Formally, first, by definition,

E[Y (1)|R = 1] = E[g(X1) + ε|R = 1]. Second, since X1 is observed, E[g(X1)|R = 1] can be

identified using women who remain childless similar to E[Y (0)|R = 1], specifically:

E

[
g(X1)

(1−D)∏w
j=1(1− ej(Xj))

]/
E

[
(1−D)∏w

j=1(1− ej(Xj))

]
= E [g(X1) | R = 1] .

Since among women whose first ACP succeeds, Y (1) and g(X1) are observed, ε is observed,

meaning that E[ε|R = 1] can be bounded similar to how E[Y (1)|R = 1] is bounded using

the baseline method without covariates. Then, it can be combined with the point-identified

E[g(X1)|R = 1] to obtain bounds on E[Y (1)|R = 0]. As in the baseline method, combining

point-identified E[Y (0)|R = 0] with the bounds on E[Y (1)|R = 0] gives bounds on τATR.

Note that theoretically, the bounds obtained using this approach need not be narrower and

could even be wider than the baseline bounds that ignore covariates. To see this, consider

a case where Y is constant. In this case, the baseline bounds collapse to a point, whereas

the new bounds may not, since g(X1) need not be constant, meaning that ε is not constant

either. In practice, however, the bounds can be substantially narrower than those that
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Figure A20: Effects on Women Using Reisualization Approach (Leave-Adjusted Hours)

do not leverage covariates, and in some cases, they can match the sharp bounds. Bounds

based on different g(.)’s can also be compared empirically. This approach can also be used to

leverage continuous covariates in the baseline Lee (2009) bounds and can also be combined

with the method proposed by Lee (2009) to narrow the bounds using discrete covariates by

estimating bounds for each discrete covariate cell before aggregating.

I implement the above approach in these steps: (1) estimate ej(xj) for all j to obtain

estimates of weights ww
i = Z1i/e1(X1i)+(1−ZAi)/

∏Ai
j=1(1−ej(Xji)), (2) estimate g(x1) by

regressing Y on X1 using women with Z1 = 1 and estimates of weights ww
i , (3) separately

regress D on X1 using women whose first ACP succeeded and women whose ACPs all

failed, with estimates of weights ww
i , (4) split the sample into quintiles based on differences

in fitted values for the two regressions in step (3), (5) estimate bounds on the effect in

each quintile using Y − g(X1) as the outcome with weights ww
i , (6) aggregate across bins

with weights proportional to the estimated relative share in each bin with estimates of

weights ww
i . Confidence intervals are based on Stoye (2020) with the covariance matrix

obtained via Bayesian bootstrap with 150 draws and weights wi ∼ exp(1) used for step (1),

and replacing ww
i with wiw

w
i for other steps. Figure A20 presents the results for women’s

outcomes. Overall, are very close to the baseline estimates.

A6 Accounting for Age Difference Between Partners

My main estimates of the share of gender inequality caused by parenthood focus on the

within-couple gender gap for each year after becoming parents. This gap also captures

differences related to the within-couple age gap, which may distort the picture of aggregate
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Figure A21: Share of Gender Inequality Caused by Parenthood Using Partner’s Income Lagged to
Match Woman’s Age (Leave-Adjusted Hours)

gender inequality in the economy because men’s outcomes are measured at systematically

older ages. A particular concern is that if work hours and income increase with age, my

estimates might understate the share of aggregate gender inequality caused by parenthood.

Ideally, using cumulative lifetime outcomes would directly address this issue, but since

such data is unavailable, a different approach is required. One way to address this would be

to correct for age differences parametrically, but this would require strong and potentially

opaque assumptions. Instead, I opt for a simple approach that fits elegantly into my frame-

work: I adjust the timing of when men’s outcomes are measured based on the woman’s

age. For example, if a woman is two years younger than her male partner, I lag the male’s

outcome in each period by two years. This ensures that gender gaps in outcomes within

couples are measured at the same point in their life cycle. The adjustment reduces my

sample by 22%, as it excludes couples where the male partner is much older or younger,

leaving me with 12,146 observations.

Figure A21 presents the results. The adjustment has little impact on the estimates; if

anything, the upper bound for the share of gender inequality caused by parenthood in hours

decreases, while that in income increases by no more than 10 percentage points.

A7 Confidence Intervals for Different Methods

While my method only partially identifies the effects, my estimates are substantially more

precise. Figure A22 presents the width of 95% confidence intervals for my bounds, IV

estimates, and ES estimates. The latter two methods are implemented as described in
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Figure A22: 95% Confidence Interval Width for Different Methods

Section A4.2. The confidence intervals for the three methods are almost identical. Most

of the uncertainty in my estimates arises from identifying bounds rather than sampling

variability in the estimation process. Similarly, the method introduced in Section A8, used

to estimate τATR under the assumption of static effects, provides a more precise alternative

to the IV method. Intuitively, this improvement occurs because much of the uncertainty

around IV estimates stems from scaling the reduced form by a low first stage. Leveraging

women’s complete ACP histories improves the first stage by expanding it from compliers

to reliers, thereby reducing the amplification of noise.

A8 Testing Assumptions for Parametric Bias Correction

In this section, I introduce an estimator of τATR(t) that parallels the Wald estimator of

τLATE(t), as it identifies a linear combination of a group average treatment effect and a group

average effect of delaying parenthood. I then demonstrate how each of the two estimators

can be used to identify τATE(t) under the parametric assumptions used by Bensnes et al.

(2023) and Gallen et al. (2023). Since the assumptions imply that both methods should yield

identical results, differing results allow for the rejection of these parametric assumptions.

I first introduce several functions that will be used to estimate τLATE and τATR under
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the assumption of of static effects:

g0+a (G) = γ0,1+a (X1) + (a− γ0,1+(X1))Π
w
j=1

(1− Zj)

(1− ej(Xj))

+ Σw
k=1

[
1{A≥k}Π

k−1
j=1

(1− Zj)

1− ej(Xj)

(ek(Xk)− Zk)

1− ek(Xk)
[γ0,1+a (X1)− γ0,k+a (Xk)]

]
g0a(G) = γ0a(X1) + (a− γ0a(X1))

Z1

e1(X1)

g1a(G) = γ1a(X1) + (a− γ1a(X1))
1− Z1

1− e1(X1)
,

where γ1a(X1) is the OLS prediction of a given X1 among observations with Z1 = 1 with

weights 1/e1(X1), γ
0
a(X1) is the OLS prediction of a given X1 among observations with

Z1 = 0 with weights 1/(1− e1(X1)), γ
0,k+
a (X1) is the OLS prediction of a at Xk given Xk

among observations with Z1 = 0, A ≥ k with weights 1/(
∏A

j=1(1− ej(Xj))).

E[g1Yt
(G) − g0Yt

(G)]/E[g1Dt
(G) − g0Dt

(G)] corresponds to a Wald estimator of τLATE(t)

where the reduced form and the first stage are both implemented in a doubly-robust manner

to maximize precision. E[g1Yt
(G) − g0+Yt

(G)]/E[g1Dt
(G) − g0+Dt

(G)] corresponds to the Wald-

like estimator of τATR(t), where the reduced form and the first stage are also implemented

in a doubly-robust manner to maximize precision.

Following standard argument under assumptions 5,6,7, 10, and 4 for all t, gives:

E[g1Y1
(G)− g0Y1

(G)]

E[g1D1
(G)− g0D1

(G)]
= τLATE(1),

and similarly, using the Lemma and the standard argument gives:

E[g1Y1
(G)− g0+Y1

(G)]

E[g1D1
(G)− g0+D1

(G)]
= τATR(1).

In periods after the first, both approaches may be biased due to dynamic effects, specif-

ically in the second period:

E[g1Y2
(G)− g0Y2

(G)]

E[g1D2
(G)− g0D2

(G)]
= τLATE(2) +

Pr(C2 = 0, C1 = 1)

Pr(C2 = 1)
E[Y2(1)− Y2(2)|C2 = 0, C1 = 1]

E[g1Y2
(G)− g0+Y2

(G)]

E[g1D2
(G)− g0+D2

(G)]
= τATR(2) +

Pr(R2 = 0, R1 = 1)

Pr(R1 = 1)
E[Y2(1)− Y2(2)|R2 = 0, R1 = 1].

To correct the bias in the IV estimates Bensnes et al. (2023) and Gallen et al. (2023) assume:

Assumption 10 (Parametric Effects).

1. Yt(1)− Yt(0) = τATE(t),

2. Yt(k)− Yt(0) = τATE(1 + t− k) for all k ≤ t.
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The first part restricts heterogeneity across individuals while the second part means

that the effects only depend on time spent in parenthood but not the moment of becoming

a parent. Under the two assumptions, the parameter identified by the Wald estimator in

the second period simplifies to:

E[g1Y2
(G)− g0Y2

(G)]

E[g1D2
(G)− g0D2

(G)]
= τATE(2) +

Pr(C2 = 0, C1 = 1)

Pr(C1 = 1)
(τATE(2)− τATE(1))

Since under assumption 10 τATE(1) = τLATE(1), and since τLATE(1), Pr(C2 = 0, C1 = 1),

and Pr(C2 = 1) are identified, τATE(2) can be backed out. Following similar reasoning for

subsequent periods allows to back out τATE(t) for all t.

My test for assumption 10 uses the fact that τATE(t) can also be backed out using the

Wald-like estimates of τATR(t), and that when the assumptions 10 holds, the two approaches

should give similar results. To ease exposition, define the pseudo-outcome:

Ŷ l
t =

Yt, if D1 = 1 or Dt = 0,

Yt − τ l(k), otherwise, where k = 1 + t− (min{j : Dj = 1}) ,

for l ∈ {C,R}, where:

τC(t) =
E[g1

Ŷt
(G)− g0

Ŷt
(G)]

E[g1D1
(G)− g0D1

(G)]
,

and

τR(t) =
E[g1

Ŷt
(G)− g0+

Ŷt
(G)]

E[g1D1
(G)− g0+D1

(G)]
.

For women who become mothers in later periods, the pseudo-outcome is the realized out-

come adjusted by subtracting the effect of being a mother for their motherhood duration,

which is identified in previous periods. Under assumptions 10, the pseudo-outcome equals

their control outcome. τC(t) corresponds to how τATE(t) is identified using the Gallen et

al. (2023) method based on τLATE(t). τR(t) corresponds to how it can be identified using

τATR(t). Under assumptions 5,6,7, 10, and 4 for all t, τR(t) = τC(t) for all t; if the two are

not equal, at least one of the assumptions must be violated. Note that the only additional

assumption that I require relative to Bensnes et al. (2023) and Gallen et al. (2023) is that

the outcomes of subsequent ACPs are as good as random, conditional on observables.

Figure A23 presents the results for women’s outcomes. Confidence intervals for the

different between the estimates in each period are obtained using Bayes bootstrap with

weights wi ∼ exp(1) and 150 draws, where all parameters are estimated sequentially in each

draw. Estimates of τC(t) suggest a substantially smaller career cost of motherhood than

τR(t), which indicates that the parametric effects assumption is violated.
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Figure A23: Estimates Using Parametric Bias Correction

A9 Mental Health, Relationship Stability, and Monotonicity

Here I estimate the effects on antidepressant uptake, discuss empirical support for the

monotonicity assumption, and present bounds that address mental health and separation

separately.

To maximize precision in estimating the impact on antidepressant uptake, I use the

method described in section A8 with target parameter:

E[g1Y1
(G)− g0+Y1

(G)]

E[g1D1
(G)− g0+D1

(G)]
,

where the outcome is taking antidepressants in a given year. In the absence of dynamic

effects, it identifies τATR. Figure A24 presents the results, the effects are precisely estimated

and indistinguishable from zero. Estimates based on an IV estimator are also not statically

different from zero. Note that focusing on the reduced form effects would only make the

estimates closer to zero.

Next, I discuss empirical support for the monotonicity assumption. Since it states

that reliers are subsequent reliers with probability one (Pr(R+ ≥ R) = 1), it implies that

the relier share is at least as large as the subsequent relier share, E[r+(X1)] ≥ E[r(X1)].

Moreover, it implies that the subsequent relier share at each covariate value is at least as

large as the relier share at that value, r+(X1) ≥ r(X1). Since r+(X1) and r(X1) can be

estimated, comparing them allows to evaluate potential monotonicity violations.

The top left graph in Figure A25 plots the empirical distribution of the difference be-

tween the estimated conditional subsequent relier and the estimated relier shares in year 7.
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Figure A24: Effects on Antidepressant Uptake

0

0.01

0.02

0.03

0.04

0.05

0.06

−0.4 −0.2 0.0 0.2 0.4 0.6

Monotonicity

0

0.01

0.02

0.03

0.04

0.05

0.06

−0.4 −0.2 0.0 0.2 0.4 0.6

Partial monotonicity

0

0.01

0.02

0.03

0.04

0.05

0.06

−0.4 −0.2 0.0 0.2 0.4 0.6

Partial (depression only)

0

0.01

0.02

0.03

0.04

0.05

0.06

−0.4 −0.2 0.0 0.2 0.4 0.6

Partial (separations only)

Figure A25: Histogram of estimated r+(X1)− r(X1)
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Figure A26: Effects on Resilient Women (Depression Only)

For 25% of observations, the difference is smaller than zero. While this does not support

the monotonicity assumption, such inconsistencies may be due to estimation error in the

two functions. Consistent with this explanation, in most of these cases, the difference be-

tween the two shares is very close to zero. For only 5% of the observations, the estimated

difference is below −0.1, suggesting that violations of the monotonicity assumption are not

readily apparent.

The right graph in Figure A25 repeats this for the relaxed partial monotonicity assump-

tion introduced in section 7.3, which allows for monotonicity violations among women who

would separate from their partners or uptake antidepressants after ACP failure. The esti-

mated difference between the two shares is below zero for only 5% of observations, and it

is below −0.1 for only 1% of observations, suggesting even stronger support for the partial

monotonicity assumption. The two panels in the second row of Figure A25 repeat this when

monotonicity is allowed to fail among women who would uptake antidepressants or separate

from their partner separately, and the results remain similar. The equivalent results from

earlier years are only more favorable for the monotonicity assumption.

Finally, Figures A26 and A27 present estimated labor market impacts of parenthood for

reliers who would not uptake antidepressants after ACP failure and who would remain with

their original ACP partner, respectively. Overall, the estimates are close to the baseline.

73



−900
−800
−700
−600
−500
−400
−300
−200
−100

0
100
200
300
400
500

1 2 3 4 5 6 7
Time (years)

Hours

−25000
−22500
−20000
−17500
−15000
−12500
−10000

−7500
−5000
−2500

0
2500
5000
7500

10000

1 2 3 4 5 6 7
Time (years)

Income

Bounds 95% CI

Figure A27: Effects on Resilient Women (Separation Only)

A10 Heterogeneity by Willingness to Undergo ACPs

E[Y (0)|Rt = 1,W1 ≥ k] can be identified following similar steps to the theorem. For brevity,

I present how E[Y (1)|Rt = 1,W1 ≥ k] can be bounded in a setting with unconditional

dynamic sequential unconfoundedness. Extending it to a setting with conditional dynamic

sequential unconfoundedness amounts to weighting observations to account for differences

in the likelihood of undergoing at least k failed ACPs.

The key feature enabling this analysis is that the dynamic model imposes that if women

become mothers in the first period through subsequent ACPs, their treated outcomes are

realized: Y = Y (1) | A1 = k, Zk = 1. This allows for a group of women whose treated

outcomes are realized after undergoing multiple ACPs, simultaneously revealing information

about their willingness to undergo ACPs and their treated outcomes.

An important nuance for narrowing the bounds by leveraging monotonicity in this anal-

ysis concerns the definition of non-ACP fertility, D+. The original definition does not

distinguish whether a woman would have a non-ACP child after her first ACP succeeded or

if a subsequent ACP succeeded. This distinction does not matter for the baseline analysis,

as only the former scenario is considered. Here, however, the scenarios in which women

enter motherhood after subsequent ACPs are also considered. These different scenarios can

be distinguished by defining k-reliance, which describes whether a woman would conceive

any non-ACP children if she had her first child through her k’th ACP. Then, monotonicity

should hold between reliance and k-reliance, similar to the relationship between reliance

and subsequent reliance (or 1-reliance). For brevity, I preserve the original definition of

D+.
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Formally:

E[1{Yt≤q}|Zk = 1, A1 = k,D+ = 0] = E[1{Yt(1)≤q}|Zk = 1, A1 ≥ k,R+
t = 1] (24)

= E[1{Yt(1)≤q}|A1 ≥ k,W1 ≥ k,R+
t = 1] (25)

= E[1{Yt(1)≤q}|Zk−1 = 0, A1 ≥ k − 1,W1 ≥ k,R+
t = 1] (26)

= E[1{Yt(1)≤q}|A1 ≥ k − 1,W1 ≥ k,R+
t = 1] (27)

= E[1{Yt(1)≤q}|W1 ≥ k,R+
t = 1] (28)

= Pr(Yt(1) ≤ q|W1 ≥ k,R+
t = 1), (29)

where (24) holds because D1 = 1|A1 = k, Zk = 1, which implies Y = Y (1)|A1 = k, Zk = 1,

and because D+
t = 1− R+

t |Zk = 1, A1 ≥ k. (25) holds by dynamic sequential unconfound-

edness and becauseW1 ≥ k|Ak ≥ k. (26) holds because 1{A1≥k} = 1{A≥k−1,Zk−1=0}|W1 ≥ k.

(27) holds by dynamic sequential unconfoundedness, (28) is obtained by iteratively applying

steps similar to (25) through (27), and (29) holds by definition. Following similar arguments,

Pr(Rt = 1|W1 ≥ k) and Pr(R+
t = 1|W1 ≥ k) can be identified, which is sufficient to bound

E[τ |Rt = 1,W1 ≥ k].

Since under conditional sequential unconfoundedness, these bounds involve weighted

quantile functions, I implement them in the following steps: (1) estimate ej(xj) for j ≤ k,

(2) obtain bounds using the method described in Section A5 and the subsample of women

who underwent k + 1 ACPs in the first period, treating their (k + 1)’th ACP as the first

and implementing every step with estimates of weights 1/Πk
j=1(1− ej(Xj)).

A11 Imputation for Non-ACP Families

Consider a population consisting of women who conceive their first child without ACPs and

women who undergo ACPs for their first child. Let 1REP be an indicator that takes the

value 1 if a woman belongs to the non-ACP group, and 0 otherwise. For non-ACP women,

t = 1 represents the moment of conception for their first child, and their treated outcomes

from this point onward are observed. The ES approach imputes childless outcomes for

women in period t with covariates x∗t , which include age and calendar year, using average

control outcomes among women with the same covariates in period 0, X∗
0 = x∗t :

gEt (xt) = E
[
Y0(0) | 1REP = 1, X∗

0 = x∗t
]
.

Instead, I propose to impute childless outcomes for women in period t with covariates x∗t

using average control outcomes in period t among women who remain reliers until the last
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period and have with similar covariates in period t, X∗
t = x∗t :

35

gIt (xt) = E [Yt(0) | RT = 1, X∗
t = x∗t ] .

The two covariates I leverage are age and pre-parenthood or pre-ACP education.

I estimate gIt (xt) by regressing Yt on dummies for age in period t and pre-ACP higher

education dummy using a sample of women who remain childless 7 years after the first ACP

with weights ww
i = 1/ΠAi7

j=1(1 − ej(Xji)). To avoid empty bins, I group women aged 40 or

older into a single category, as fewer than 5% of women are 40 or older in the year before

their pre-ACP. To ensure the ES estimates are comparable, I apply the same approach; this

has little impact, as few mothers in the non-ACP group reach this age within the sample

period. Standard errors for the difference from the ES estimates obtained using Bayes

bootstrap in the following steps: (1) draw weights wi ∼ exp(1), (2) estimate ej(xj) for all

j with weights wi to obtain an estimate of ww
i , (3) estimate gIt (xt) with estimated weights

wiw
w
i , (4) estimate the ES with weights wi, (5) compute sample average of ES predictions

and gIt (Xt) in the non-ACP population with weights wi and take the difference between the

two (6) repeat steps 1-5 150 times to obtain a collection of bootstrap estimates (7) estimate

covariance matrix of the bootstrap estimates.

35Assuming covariates X∗
t are deterministic conditional on X∗

1 (such as age and education in period 0),
gIt (X

∗
t ) can be identified using my baseline method. For both methods, the average counterfactual career

trajectories for non-ACP families are obtained by evaluating the expectation of the imputation function in the
non-ACP population: E[gIt (X∗

t )|1REP = 1] and E[gEt (X∗
t )|1REP = 1]. The formal identification assumption

for my approach is that reliers have similar control career trajectories to women in the representative sample,
conditional on pre-parenthood or pre-ACP covariates E[Yt(0)|RT = 1, X∗

0 ] = E[Yt(0)|1REP = 1, X∗
0 ] for all t.
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